@phdthesis{Hartmann2014, author = {Hartmann, Sonja}, title = {Relevance of antibodies targeting the beta1-adrenergic receptor for renal function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106285}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Functionally active (conformational) autoantibodies directed against the β1-adrenergic receptor (β1-AR) are supposed to have a pathogenic relevance in human heart failure, particularly in idiopathic dilated cardiomyopathy (DCM). Prevalence of anti-β1-autoantibodies (anti-β1-aabs) in the healthy population is almost negligible, whereas it amounts to up to 30\% in heart failure patients with idiopathic DCM. As β1-ARs are not restricted to the heart and are also highly expressed in particular segments of the nephron, it is conceivable that such autoantibodies might also affect kidney function to some extent through the activation of renal β1-ARs. In the kidney, β1-ARs are highly abundant in the juxtaglomerular apparatus, the distal convoluted tubules, the collecting duct, and the renal arteries. However, the functional significance of β1-ARs at these particular sites along the nephron is poorly understood, as are the effects of conformational stimulating anti-β1-aabs on renal β1-ARs. From the available literature, it is well known that the β1-adrenergic system is involved in, e.g., the regulation of renin-secretion from juxtaglomerular cells. In addition, the β1-adrenergic system is thought to be involved in the regulation of the urine pH via type B-intercalated cells in the collecting duct. In contrast, the regulation of salt- and fluid-secretion in the medullary collecting duct appears to occur independently from the SNS. As a consequence, the present work aimed to unravel the potential pathophysiological links between renal function, alterations in the cardiovascular system, and circulating agonist-like anti- β1-abs. We analyzed possible renal effects of anti-β1-abs in a human-analogous rat model. After immunization with a GST-fusion protein containing the second extracellular loop (β1-ECII) of the human β1-AR, Lewis-rats develop functionally active, stimulating, conformational anti-β1-ECII-abs. Within the first 6 months, anti-β1-ECII-ab-positive animals develop a hypertensive phenotype, which after 9 months evolves into a DCM phenotype. In n=40 GST/ β1-ECII-immunized Lewis rats and n=40 age-matched, 0.9\% NaCl-injected control animals, we sequentially (i.e. at months 1, 2, 3, 6, 9, 12, 15, and 18 after start of immunization) analyzed the changes in renal function on a molecular, functional, and structural level. We could show that the presence of stimulating anti-β1-ECII-abs - even though having detrimental effects on the heart - has only a minor impact on kidney function and structure. Within the first 3 months after induction of anti-β1-ECII-abs, the levels and activity of renin were significantly increased in immunized compared to corresponding control animals, which was confirmed by experiments on isolated perfused kidneys, in which anti-β1-ECII-abs were able to directly induce the liberation of renin. However, within several weeks the initial anti-β1-ECII-ab-mediated RAAS activation was counter-regulated by auto-regulatory mechanisms activated in the kidney. Similarly, glomerular filtration rate (GFR) and renal blood flow (RBF) were initially decreased in the presence of the stimulating anti-β1-ECII-abs, but returned to control values within 3 months after immunization of the animals. Although expression of several pro-fibrotic markers was significantly up-regulated in anti-β1-ECII-ab-positive rats, no significant differences were noted on a histomorphological level with regard to the occurrence of renal fibrosis, glomerular damage, tubular damage, and perivascular fibrosis. Only a mild decrease in glomerular filtration function was observed in the kidneys of anti-β1-ECII-ab-positive animals from immunization-month 12 on, apparent by increased levels of urinary protein. Even though anti-β1-ECII-abs were able to induce mild changes in renal function, their effects were not strong enough to critically damage the kidneys in our rat-model. Differences between immunized anti-β1-ECII-ab-positive and corresponding control rats at later time-points (that is, from immunization-month 12 on) are most likely secondary to the progressive heart failure phenotype that immunized animals develop in the course of the experiment. The present study is the first to focus on the effects of stimulating anti-β1-ECII-abs on the kidney, and on the prevalence of these effects for the heart (referred to as cardio-renal crosstalk). Although our results were obtained in a rat model, they might contribute to better understand the situation in anti-β1-AR-aab-positive human patients. Following the results of our experiments, treatment of such patients should focus on direct and specific neutralization/elimination of stimulating anti-β1-ECII-aab or at least comprise therapeutic strategies that counteract the anti-β1-ECII-aab-effects on the heart by standard treatment for heart failure (i.e. ACE inhibitors, AT1-receptor blockers, and β-blockers) according to current guidelines.}, subject = {Nierenfunktion}, language = {en} } @phdthesis{Schlippverh:Woelfel2011, author = {Schlipp [verh.: W{\"o}lfel], Angela}, title = {Characterization of anti-beta1-adrenoceptor antibodies with F{\"o}rster resonance energy transfer microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67162}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Dilated cardiomyopathy (DCM) represents an important subgroup of patients suffering from heart failure. The disease is supposed to be associated with autoimmune mechanisms in about one third of the cases. In the latter patients functionally active conformational autoantibodies directed against the second extracellular loop of the β1-adrenergic receptor (AR, β1ECII-aabs) have been detected. Such antibodies chronically stimulate the β1-AR thereby inducing the adrenergic signaling cascade in cardiomyocytes, which, in the long run, contributes to heart failure progression. We analyzed the production of cAMP after aab-mediated β1-AR activation in vitro using a fluorescence resonance energy transfer (FRET) assay. This assay is based on HEK293 cells stably expressing human β1-AR as well as the cAMP-sensor Epac1-camps. The assay showed a concentration-dependent increase in intracellular cAMP upon stimulation with the full agonist (-) isoproterenol. This response was comparable to results obtained in isolated adult murine cardiomyocytes and was partially blockable by a selective β1-AR antagonist. In the same assay poly- and monoclonal anti-β1ECII-abs (induced in different animals) could activate the adrenergic signaling cascade, whereas isotypic control abs had no effect on intracellular cAMP levels. Using the same method, we were able to detect functionally activating aabs in the serum of heart failure patients with ischemic and hypertensive heart disease as well as patients with DCM, but not in sera of healthy control subjects. In patients with DCM we observed an inverse correlation between the stimulatory potential of anti-β1-aabs and left ventricular pump function. To adopt this assay for the detection of functionally activating anti-β1ECII-aabs in clinical routine we attempted to establish an automated large-scale approach. Neither flow cytometry nor FRET detection with a fluorescence plate reader provided an acceptable signal-to-noise ratio. It was possible to detect (-) isoproterenol in a concentration-dependent manner using two different FRET multiwell microscopes. However, due to focus problems large-scale detection of activating anti-β1ECII-abs could not be implemented. Neutralization of anti-β1-aabs with the corresponding epitope-mimicking peptides is a possible therapeutic approach to treat aab-associated autoimmune DCM. Using our FRET assay we could demonstrate a reduction in the stimulatory potential of anti-β1ECII-abs after in vitro incubation with β1ECII-mimicking peptides. Cyclic (and to a lesser extent linear) peptides in 40-fold molar excess acted as efficient ab-scavengers in vitro. Intravenously injected cyclic peptides in a rat model of DCM also neutralized functionally active anti-β1ECII-abs efficiently in vivo. For a detailed analysis of the receptor-epitope targeted by anti-β1ECII-abs we used sequentially alanine-mutated β1ECII-mimicking cyclic peptides. Our data revealed that the disulfide bridge between the cysteine residues C209 and C215 of the human β1-AR appears essential for the formation of the ab-epitope. Substitution of further amino acids relevant for ab-binding in the cyclic scavenger peptide by alanine reduced its affinity to the ab and the receptor-activating potential was blocked less efficiently. In contrast, the non-mutant cyclic peptide almost completely blocked ab-induced receptor activation. Using this ala-scan approach we were able to identify a "NDPK"-epitope as essential for ab binding to the β1ECII. In summary, neutralization of conformational activating anti-β1ECII-(a)abs by cyclic peptides is a plausible therapeutic concept in heart failure that should be further exploited based on the here presented data.}, subject = {Adrenerger Rezeptor}, language = {en} }