@phdthesis{Ewald2014, author = {Ewald, Heike}, title = {Influence of context and contingency awareness on fear conditioning - an investigation in virtual reality}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Fear conditioning is an efficient model of associative learning, which has greatly improved our knowledge of processes underlying the development and maintenance of pathological fear and anxiety. In a differential fear conditioning paradigm, one initially neutral stimulus (NS) is paired with an aversive event (unconditioned stimulus, US), whereas another stimulus does not have any consequences. After a few pairings the NS is associated with the US and consequently becomes a conditioned stimulus (CS+), which elicits a conditioned response (CR). The formation of explicit knowledge of the CS/US association during conditioning is referred to as contingency awareness. Findings about its role in fear conditioning are ambiguous. The development of a CR without contingency awareness has been shown in delay fear conditioning studies. One speaks of delay conditioning, when the US coterminates with or follows directly on the CS+. In trace conditioning, a temporal gap or "trace interval" lies between CS+ and US. According to existing evidence, trace conditioning is not possible on an implicit level and requires more cognitive resources than delay conditioning. The associations formed during fear conditioning are not exclusively associations between specific cues and aversive events. Contextual cues form the background milieu of the learning process and play an important role in both acquisition and the extinction of conditioned fear and anxiety. A common limitation in human fear conditioning studies is the lack of ecological validity, especially regarding contextual information. The use of Virtual Reality (VR) is a promising approach for creating a more complex environment which is close to a real life situation. I conducted three studies to examine cue and contextual fear conditioning with regard to the role of contingency awareness. For this purpose a VR paradigm was created, which allowed for exact manipulation of cues and contexts as well as timing of events. In all three experiments, participants were guided through one or more virtual rooms serving as contexts, in which two different lights served as CS and an electric stimulus as US. Fear potentiated startle (FPS) responses were measured as an indicator of implicit fear conditioning. To test whether participants had developed explicit awareness of the CS-US contingencies, subjective ratings were collected. The first study was designed as a pilot study to test the VR paradigm as well as the conditioning protocol. Additionally, I was interested in the effect of contingency awareness. Results provided evidence, that eye blink conditioning is possible in the virtual environment and that it does not depend on contingency awareness. Evaluative conditioning, as measured by subjective ratings, was only present in the group of participants who explicitly learned the association between CS and US. To examine acquisition and extinction of both fear associated cues and contexts, a novel cue-context generalization paradigm was applied in the second study. Besides the interplay of cues and contexts I was again interested in the effect of contingency awareness. Two different virtual offices served as fear and safety context, respectively. During acquisition, the CS+ was always followed by the US in the fear context. In the safety context, none of the lights had any consequences. During extinction, a additional (novel) context was introduced, no US was delivered in any of the contexts. Participants showed enhanced startle responses to the CS+ compared to the CS- in the fear context. Thus, discriminative learning took place regarding both cues and contexts during acquisition. This was confirmed by subjective ratings, although only for participants with explicit contingency awareness. Generalization of fear to the novel context after conditioning did not depend on awareness and was observable only on trend level. In a third experiment I looked at neuronal correlates involved in extinction of fear memory by means of functional magnetic resonance imaging (fMRI). Of particular interest were differences between extinction of delay and trace fear conditioning. I applied the paradigm tested in the pilot study and additionally manipulated timing of the stimuli: In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Most importantly, prefrontal activation differed between the two groups. In line with existing evidence, the ventromedial prefrontal cortex (vmPFC) was activated in the DCG. In the TCG I found activation of the dorsolateral prefrontal cortex (dlPFC), which might be associated with modulation of working memory processes necessary for bridging the trace interval and holding information in short term memory. Taken together, virtual reality proved to be an elegant tool for examining human fear conditioning in complex environments, and especially for manipulating contextual information. Results indicate that explicit knowledge of contingencies is necessary for attitude formation in fear conditioning, but not for a CR on an implicit level as measured by FPS responses. They provide evidence for a two level account of fear conditioning. Discriminative learning was successful regarding both cues and contexts. Imaging results speak for different extinction processes in delay and trace conditioning, hinting that higher working memory contribution is required for trace than for delay conditioning.}, subject = {Klassische Konditionierung}, language = {en} } @article{vonCollenbergSchmittRuelickeetal.2019, author = {von Collenberg, Cora R. and Schmitt, Dominique and R{\"u}licke, Thomas and Sendtner, Michael and Blum, Robert and Buchner, Erich}, title = {An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.042366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201986}, pages = {bio042366}, year = {2019}, abstract = {Synapse-associated protein 1 (Syap1) is the mammalian homologue of synapse-associated protein of 47 kDa (Sap47) in Drosophila. Genetic deletion of Sap47 leads to deficiencies in short-term plasticity and associative memory processing in flies. In mice, Syap1 is prominently expressed in the nervous system, but its function is still unclear. We have generated Syap1 knockout mice and tested motor behaviour and memory. These mice are viable and fertile but display distinct deficiencies in motor behaviour. Locomotor activity specifically appears to be reduced in early phases when voluntary movement is initiated. On the rotarod, a more demanding motor test involving control by sensory feedback, Syap1-deficient mice dramatically fail to adapt to accelerated speed or to a change in rotation direction. Syap1 is highly expressed in cerebellar Purkinje cells and cerebellar nuclei. Thus, this distinct motor phenotype could be due to a so-far unknown function of Syap1 in cerebellar sensorimotor control. The observed motor defects are highly specific since other tests in the modified SHIRPA exam, as well as cognitive tasks like novel object recognition, Pavlovian fear conditioning, anxiety-like behaviour in open field dark-light transition and elevated plus maze do not appear to be affected in Syap1 knockout mice.}, language = {en} }