@phdthesis{BlancoRedondo2014, author = {Blanco Redondo, Beatriz}, title = {Studies of synapsin phosphorylation and characterization of monoclonal antibodies from the W{\"u}rzburg Hybridoma Library in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Synapsins are conserved synapse-associated hosphoproteins involved in the fine regulation of neurotransmitter release. The aim of the present project is to study the phosphorylation of synapsins and the distribution of phospho-synapsin in the brain of Drosophila melanogaster. Three antibodies served as important tools in this work, a monoclonal antibody (3C11/α-Syn) that recognizes all known synapsin isoforms and two antisera against phosphorylated synapsin peptides (antiserum PSyn(S6) against phospho-serine 6 and antiserum PSyn(S464) against phospho-serine 464). These antisera were recently generated in collaboration with Bertram Gerber and Eurogentec. ...}, subject = {Synapsine}, language = {en} } @phdthesis{Kutscher2016, author = {Kutscher, Marika}, title = {Novel Approaches to Antimicrobial Therapy of Pneumonia using Antibiotics and Therapeutic Antibodies}, edition = {1. Aufl.}, publisher = {Verlag Dr. Hut}, address = {M{\"u}nchen}, isbn = {978-3-8439-2784-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138475}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {176}, year = {2016}, abstract = {Nosocomial pneumonia is mostly caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the standard antibiotic therapy is affected by increasing emergence of bacterial resistance. Therefore, novel therapeutic options are in high demand. New antimicrobial agents alone cannot handle the problem of increasing bacterial resistance but innovative drug delivery strategies and fast identification of infection causing pathogens are required to diminish bacterial resistance development. A very promising approach to improve the therapy of pneumonia is presented by local drug delivery to the lung. This application method enables high local drug concentrations in the lung leading to shorter application of antibiotics and hence reduces the risk of resistance development. Furthermore, the systemic concentration is lowered reducing the emergence of adverse effects. Therefore, in this thesis several approaches to improve the therapy of MRSA pneumonia are studied. One approach to achieve an efficient local delivery of antibiotics are nano-sized drug delivery systems which enable the nebulization of poorly-soluble antibiotics and can lead to even higher local drug concentrations due to their small size since nanoparticles improve mucus penetration and decrease phagocytosis by alveolar macrophages. Here, an analytical setup was developed that facilitates the identification of optimal preparation conditions for drug polyelectrolyte nanoplexes. Another promising approach to support antimicrobial therapy of pneumonia is presented by antibody-based immunotherapy. Since the stability of the antibody and hence its therapeutic activity are endangered during production, transport, storage, and application, a stabilizing formulation was developed for hUK-66, an antibody targeting surface antigens of S. aureus. Furthermore, nebulization of this formulated monoclonal antibody was studied to enable local application. Finally, the immunotherapeutic efficacy of the nebulized hUK-66 formulation was investigated in an animal in vivo study. Furthermore, rapid identification of the infection triggering pathogen is very important. The selective detection of S. aureus was achieved using optical planar Bragg grating sensors functionalized with hUK-66. In addition, the reusability of this system was studied applying a surface functionalization based on the cross-linker SPDP which enables a reversible fixation of the antibody.}, subject = {Lungenentz{\"u}ndung}, language = {en} } @phdthesis{Halder2011, author = {Halder, Partho}, title = {Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures.}, subject = {Taufliege}, language = {en} } @book{Halder2022, author = {Halder, Partho}, title = {Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library}, doi = {10.25972/OPUS-27020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270205}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave 99 promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures.}, subject = {Taufliege}, language = {en} } @phdthesis{Hein2014, author = {Hein, Melanie}, title = {Functional analysis of angiogenic factors in tumor cells and endothelia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Tumor angiogenesis is essential for the growth of solid tumors as their proliferation and survival is dependent on consistent oxygen and nutrient supply. Anti-angiogenic treatments represent a therapeutic strategy to inhibit tumor growth by preventing the formation of new blood vessels leading to starvation of the tumor. One of the best characterized anti angiogenic therapeutics is the monoclonal antibody bevacizumab (Avastin), which targets and neutralizes VEGF leading to disruption of the VEGF signaling pathway. Until today, bevacizumab has found its way into clinical practice and has gained approval for treatment of different types of cancer including colorectal cancer, non-small cell lung cancer, breast cancer and renal cell carcinoma. Signaling of VEGF is mediated through VEGF receptors, mainly VEGFR2, which are primarily located on the cell surface of endothelial cells. However, there has been evidence that expression of VEGF receptors can also be found on tumor cells themselves raising the possibility of autocrine and/or paracrine signaling loops. Thus, tumor cells could also benefit from VEGF signaling, which would promote tumor growth. The aim of this study was to investigate if bevacizumab has a direct effect on tumor cells in vitro. To this end, tumor cell lines from the NCI-60 panel derived from four different tumor types were treated with bevacizumab and angiogenic gene and protein expression as well as biological outputs including proliferation, migration and apoptosis were investigated. Most of the experiments were performed under hypoxia to mimic the in vivo state of tumors. Overall, there was a limited measurable effect of bevacizumab on treated tumor cell lines according to gene and protein expression changes as well as biological functions when compared to endothelial controls. Minor changes in terms of proliferation or gene regulation were evident in a single tumor cell line after VEGF-A blockade by bevacizumab, which partially demonstrated a direct effect on tumor cells. However, the overall analysis revealed that tumor cell lines are not intrinsically affected in an adverse manner by bevacizumab treatment. Besides the functional analysis of tumor cells, embryonic stem cell derived endothelial cells were characterized to delineate vascular Hey gene functions. Hey and Hes proteins are the best characterized downstream effectors of the evolutionary conserved Notch signaling pathway, which mainly act as transcriptional repressors regulating downstream target genes. Hey proteins play a crucial role in embryonic development as loss of Hey1 and Hey2 in mice in vivo leads to a severe vascular phenotype resulting in early embryonic lethality. The major aim of this part of the thesis was to identify vascular Hey target genes using embryonic stem cell derived endothelial cells utilizing a directed endothelial differentiation approach, as ES cells and their differentiation ability provide a powerful in vitro system to study developmental processes. To this end, Hey deficient and Hey wildtype embryonic stem cells were stably transfected with an antibiotic selection marker driven by an endothelial specific promoter, which allows selection for endothelial cells. ESC-derived endothelial cells exhibited typical endothelial characteristics as shown by marker gene expression, immunofluorescent staining and tube formation ability. In a second step, Hey deficient ES cells were stably transfected with doxycycline inducible Flag-tagged Hey1 and Hey2 transgenes to re-express Hey proteins in the respective cell line. RNA-Sequencing of Hey deficient and Hey overexpressing ES cells as well as ESC-derived endothelial cells revealed many Hey downstream target genes in ES cells and fewer target genes in endothelial cells. Hey1 and Hey2 more or less redundantly regulate target genes in ES cells, but some genes were regulated by Hey2 alone. According to Gene Ontology term analysis, Hey target genes are mainly involved in embryonic development and transcriptional regulation. However, the response of ESC-derived endothelial cells in regulating Hey downstream target genes was rather limited when compared to ES cells, which could be due to lower transgene expression in endothelial cells. The limited response also raises the possibility that target gene regulation in endothelial cells is not only dependent on Hey gene functions alone and thus loss or overexpression of Hey genes in this in vitro setting does not influence target gene regulation.}, subject = {Krebs }, language = {en} } @phdthesis{Junker2015, author = {Junker, Markus}, title = {Development and characterization of monoclonal antibodies to GDF-15 for potential use in cancer therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Background GDF-15 is a divergent member of the TGF-superfamily, which was first described as macrophage inhibitory cytokine-1 (MIC-1), revealing an immune modulatory function. GDF-15 is a soluble protein which is, under physiological conditions, highly expressed in the placenta and found in elevated levels in blood sera of pregnant women. Apart from the placenta, GDF-15 is expressed in healthy tissue, albeit to a lower extent and overexpressed in many solid tumors. A variety of different functions are attributed to GDF-15 in healthy as well as diseased humans. On the one hand, GDF-15 is required for successful pregnancy and low GDF-15 serum levels during pregnancy correlate with fetal abortion. On the other hand, overexpression of GDF-15, which can be observed in several malignancies is correlated with a poor prognosis. Furthermore, tumor derived GDF-15 leads to cancer associated anorexia-cachexia syndrome in mice. The aim of my PhD thesis was to further investigate the role of GDF-15 as an immune modulatory factor in cancer, in particular, by inhibiting the target molecule in vitro and in vivo. Therefore, the main focus was placed on the generation and characterization of monoclonal GDF-15 specific blocking antibodies, which were tested in vitro and in vivo, which represents a substantial part of my work. Results Here, GDF-15 was shown to be highly expressed in human gynecological cancer and brain tumors. We could then demonstrate that GDF-15 modulates effector immune cells in vitro. GDF-15 mediated a slight downregulation of the activating NKG2D receptor on NK and CD8+ T cells, which is crucial for proper anti-tumoral immune responses. Furthermore, we could demonstrate that GDF-15 reduces the adhesion of CD4+ and CD8+ T cells on endothelial cells in vitro. A negatively affected trans-endothelial migration of leukocytes into inflamed tissue could explain the low T cell infiltration in GDF-15 expressing tumors, which were observed in vivo, where mice bearing (shRNA mediated) GDF-15 deficient glioma cells revealed enhanced immune cell infiltrates in the tumor microenvironment, compared with the GDF-15 expressing control group. Those animals further exhibited a decreased tumor growth and prolonged survival. GDF-15 is a soluble protein, secreted by more than 50 \% of solid tumors and associated with grade of malignancy. Therefore a neutralizing monoclonal antibody to GDF-15 was assumed to be an auspicious therapeutically anti-cancer tool. Such an antibody was thus generated in GDF-15 knock out mice against human GFD-15. Amongst many clones, the GDF-15 antibody clone B1-23 was found to be applicable in Western Blot as well as in ELISA techniques, detecting a three-dimensional epitope of the mature GDF-15 dimer with high affinity and specificity. To enable the humanization for a later administration in humans, the variable regions of antibody B1-23 were identified by a special PCR method using degenerate primers and cloned into a sequencing vector. The sequence obtained thereby enabled the generation of chimeric and humanized B1-23 variants. After further comprehensive characterization, the original mouse antibody B1-23 as well as the chimeric antibody (ChimB1-23) and the humanized B1-23 antibody (H1L5) were applied in a melanoma xenograft study in vivo. None of the antibodies could significantly inhibit tumor growth. .However of utmost importance, body weight loss mediated by tumor derived GDF-15 could be significantly prevented upon administration of all three GDF-15 specific antibodies, which confirmed the antagonizing functionality of the immunoglobulin. Conclusion GDF-15 is a promising cancer target, involved in tumor progression and cancer related cachexia. A monoclonal GDF-15 antibody was generated, which served on one hand as a tool for molecular biological applications (Western Blot, ELISA, etc.) and on the other hand was applied as an antagonizing antibody in vitro and in vivo. Even though tumor growth inhibition by GDF-15 depletion in T cell deficient athymic mice failed using B1-23, the same antibody and derivates thereof (chimeric and humanized) impressively prevented tumor associated cachexia in UACC-257 melanoma bearing nude mice. The missing anti-tumor effect in our own melanoma model in nude mice can only partially be explained by the missing secondary immunity, in particular cytotoxic T cells, in the athymic animals, since in a similar melanoma model, performed by an external company, a tumor reduction in immunocompromised animals was observed, when B1-23 was administered. These findings support the idea that T cells are substantial for an effective tumor immunity and are in line with the results of the syngeneic, T cell comprising, mouse glioma model, where silencing of tumor expressed GDF-15 led to an enhanced intratumoral T cell infiltration and a prolonged survival. Taken together our data allow for the conclusion that tumor associated cachexia can be combatted with the GDF-15 antibody B1-23. Further, B1-23 might elicit direct anti-tumor effects in immune competent models, which contain T cells, rather than in an athymic, T cell deficient nude mouse model.}, subject = {Growth-differentiation Factor 15}, language = {en} }