@phdthesis{LindenbergverhSchubert2021, author = {Lindenberg [verh. Schubert], Annekathrin}, title = {Timing of sensory preferences in \(Camponotus\) Ants}, doi = {10.25972/OPUS-16094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ants belong to the most successful insects living on our planet earth. One criterion of their tremendous success is the division of labor among workers that can be related to age (age¬- or temporal polyethism) and/ or body size (size-related polymorphism). Young ants care for the queen and brood in the nest interior and switch to foraging tasks in the outside environment with ongoing age. This highly flexible interior-exterior transition probably allows the ant workers to properly match the colony needs and is one of the most impressive behaviors a single worker undergoes during its life. As environmental stimuli are changing with this transition, workers are required to perform a new behavioral repertoire. This requires significant adaptions in sensory and higher¬-order integration centers in the brain, like the mushroom bodies. Furthermore, foragers need proper time measuring mechanisms to cope with daily environmental changes and to adapt their own mode of life. Therefore, they possess a functional endogenous clock that generates rhythms with a period length of approximately 24 hours. The species-rich genus of Camponotus ants constitute a rewarding model to study how behavioral duties of division of labor were performed and modulated within the colony and how synaptic plasticity in the brain is processed, as they can divide their labor to both, age and body size, simultaneously. In my PhD thesis, I started to investigate the behavioral repertoire (like foraging and locomotor activity) of two sympatric Camponotus species, C. mus and C. rufipes workers under natural and under controlled conditions. Furthermore, I focused on the division of labor in C. rufipes workers and started to examine structural and ultrastructural changes of neuronal architectures in the brain that are accompanied by the interior-exterior transition of C. rufipes ants. In the first part of my thesis, I started to analyze the temporal organization of task allocation throughout the life of single C. rufipes workers. Constant video-tracking of individually labeled workers for up to 11 weeks, revealed an age-related division of labor of interior and exterior workers. After emergence, young individuals are tended to by older ones within the first 48 hours of their lives before they themselves start nurturing larvae and pupae. Around 52\% switch to foraging duties at an age of 14-20 days. The workers that switched to foraging tasks are mainly media-sized workers and seem to be more specialized than nurses. Variations in proportion and the age of switching workers between and within different subcolonies indicate how highly flexible and plastic the age-related division of labor occurs in this ant species. Most of the observed workers were engaged in foraging tasks exclusively during nighttime. As the experiments were conducted in the laboratory, they are completely lacking environmental stimuli of the ants´ natural habitat. I therefore asked in a second study, how workers of the two closely related Camponotus species, C. rufipes and C. mus, adapt their daily activity patterns (foraging and locomotor activity) under natural (in Uruguay, South America) and controlled (in the laboratory) conditions to changing thermal conditions. Monitoring the foraging activity of both Camponotus species in a field experiment revealed, that C. mus workers are exclusively diurnal, whereas C. rufipes foragers are predominantly nocturnal. However, some nests showed an elevated daytime activity, which could be an adaption to seasonally cold night temperatures. To further investigate the impact of temperature and light on the differing foraging activity patterns in the field, workers of both Camponotus species were artificially exposed to different thermal regimes in the laboratory, simulating local winter and summer conditions. Here again, C. mus workers display solely diurnal locomotor activity, whereas workers of C. rufipes shifted their locomotor activity from diurnal under thermal winter conditions to nocturnal under thermal summer conditions. Hence, the combination of both, field work and laboratory studies, shows that daily activity is mostly shaped by thermal conditions and that temperature cycles are not just limiting foraging activity but can be used as zeitgeber to schedule the outside activities of the nests. Once an individual worker switches from indoor duties to exterior foraging tasks, it is confronted with an entirely new set of sensory information. To cope with changes of the environmental conditions and to facilitate the behavioral switch, workers need a highly flexible and plastic neuronal system. Hence, my thesis further focuses on the underlying neuronal adaptations of the visual system, including the optic lobes as the primary visual neuropil and the mushroom bodies as secondary visual brain neuropil, that are accompanied with the behavioral switch from nursing to foraging. The optic lobes as well as the mushroom bodies of light-deprived workers show an `experience-independent´ volume increase during the first two weeks of adulthood. An additional light exposure for 4 days induces an `experience-dependent´ decrease of synaptic complexes in the mushroom body collar, followed by an increase after extended light exposure for 14 days. I therefore conclude, that the plasticity of the central visual system represents important components for the optimal timing of the interior-exterior transitions and flexibility of the age-related division of labor. These remarkable structural changes of synaptic complexes suggest an active involvement of the mushroom body neuropil in the lifetime plasticity that promotes the interior-exterior transition of Camponotus rufipes ants. Beside these investigations of neuronal plasticity of synaptic complexes in the mushroom bodies on a structural level, I further started to examine mushroom body synaptic structures at the ultrastructural level. Until recently, the detection of synaptic components in projection neuron axonal boutons were below resolution using classical Transmission Electron Microscopy. Therefore, I started to implement Electron Tomography to increase the synaptic resolution to understand architectural changes in neuronal plasticity process. By acquiring double tilt series and consecutive computation of the acquired tilt information, I am now able to resolve individual clear-core and dense-core vesicles within the projection neuron cytoplasm of C. rufipes ants. I additionally was able to reveal single postsynaptic Kenyon cell dendritic spines (~62) that surround one individual projection neuron bouton. With this, I could reveal first insights into the complex neuronal architecture of single projection neuron boutons in the olfactory mushroom body lip region. The high resolution images of synaptic architectures at the ultrastructural level, received with Electron Tomography would promote the understanding of architectural changes in neuronal plasticity. In my PhD thesis, I demonstrate that the temporal organization within Camponotus colonies involves the perfect timing of different tasks. Temperature seems to be the most scheduling abiotic factors of foraging and locomotor activity. The ants do not only need to adapt their behavioral repertoire in accordance to the interior-exterior switch, also the parts in the peripheral and central that process visual information need to adapt to the new sensory environment.}, subject = {Rossameise}, language = {en} } @phdthesis{Stieb2011, author = {Stieb, Sara Mae}, title = {Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85584}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {W{\"u}stenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabh{\"a}ngiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gel{\"a}nde bis zu mehrere hundert Meter weite Distanzen zur{\"u}ckgelegt haben, k{\"o}nnen sie pr{\"a}zise zu ihrer oft unauff{\"a}lligen Nest{\"o}ffnung zur{\"u}ckzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollst{\"a}ndig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilit{\"a}t aufweist, welche mit sich drastisch {\"a}ndernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizit{\"a}t visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische {\"A}nderungen in den Pilzk{\"o}rpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische {\"A}nderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) - einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizit{\"a}t der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer F{\"a}rbungen die pr{\"a}- und postsynaptischen Profile klar ausgepr{\"a}gter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche w{\"a}hrend des {\"U}bergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersm{\"a}ßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizit{\"a}t in der Kragenregion der PK-Kelche haupts{\"a}chlich durch visuelle Erfahrungen ausgel{\"o}st wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizit{\"a}t. Dies deutet darauf hin, dass das System {\"u}ber die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zur{\"u}ckgef{\"u}hrt, um zu untersuchen, ob die lichtausgel{\"o}ste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zur{\"u}ckf{\"u}hrung widerspiegelnde Plastizit{\"a}tsauspr{\"a}gungen, besonders eine {\"A}nderung der pr{\"a}synaptischen Synapsinexprimierung. Mithilfe immunozytochemischer F{\"a}rbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die pr{\"a}- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle {\"A}nderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Forts{\"a}tzen bestehen, welche umringt sind von einem pr{\"a}synaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltens{\"u}bergang wird von einer Zunahme an synaptischen Komplexen um ~13\% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kr{\"a}ftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signal{\"u}bertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enth{\"u}llen, dass die Ameisen, bevor sie mit ihrer Fouragiert{\"a}tigkeit anfangen, bis zu zwei Tage lang in unmittelbarer N{\"a}he des Nestes Entdeckungsl{\"a}ufe unternehmen, welche Pirouetten {\"a}hnliche Drehungen beinhalten. W{\"a}hrend dieser Entdeckungsl{\"a}ufe sammeln die Ameisen Lichterfahrung und assoziieren m{\"o}glicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Dar{\"u}ber hinaus k{\"o}nnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivit{\"a}t der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Ver{\"a}nderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizit{\"a}t und dem Verhaltens{\"u}bergang von der Innendienst- zur Fouragierphase bestehen k{\"o}nnte. Cataglyphis besitzen hervorragende visuelle Navigationsf{\"a}higkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzusp{\"u}ren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der prim{\"a}ren olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Gr{\"o}ße und r{\"a}umliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergr{\"o}ßerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis M{\"a}nnchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und K{\"o}niginnen und haben einen hervorstechenden M{\"a}nnchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergr{\"o}ßerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme {\"o}kologische Bedingungen nicht nur zu Anpassungen der visuellen F{\"a}higkeiten, sondern auch des olfaktorischen Systems gef{\"u}hrt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalit{\"a}ten zugrundeliegen, und bei der Erforschung neuronaler Plastizit{\"a}t, welche verkn{\"u}pft ist mit der lebenslangen Flexibilit{\"a}t eines individuellen Verhaltensrepertoires.}, subject = {Neuroethologie}, language = {en} } @phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} } @phdthesis{Andlauer2013, author = {Andlauer, Till Felix Malte}, title = {Structural and Functional Diversity of Synapses in the Drosophila CNS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85018}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Large-scale anatomical and functional analyses of the connectivity in both invertebrate and mammalian brains have gained intense attention in recent years. At the same time, the understanding of synapses on a molecular level still lacks behind. We have only begun to unravel the basic mechanisms of how the most important synaptic proteins regulate release and reception of neurotransmitter molecules, as well as changes of synaptic strength. Furthermore, little is known regarding the stoichiometry of presynaptic proteins at different synapses within an organism. An assessment of these characteristics would certainly promote our comprehension of the properties of different synapse types. Presynaptic proteins directly influence, for example, the probability of neurotransmitter release as well as mechanisms for short-term plasticity. We have examined the strength of expression of several presynaptic proteins at different synapse types in the central nervous system of Drosophila melanogaster using immunohistochemistry. Clear differences in the relative abundances of the proteins were obvious on different levels: variations in staining intensities appeared from the neuropil to the synaptic level. In order to quantify these differences, we have developed a ratiometric analysis of antibody stainings. By application of this ratiometric method, we could assign average ratios of presynaptic proteins to different synapse populations in two central relays of the olfactory pathway. In this manner, synapse types could be characterized by distinct fingerprints of presynaptic protein ratios. Subsequently, we used the method for the analysis of aberrant situations: we reduced levels of Bruchpilot, a major presynaptic protein, and ablated different synapse or cell types. Evoked changes of ratio fingerprints were proportional to the modifications we had induced in the system. Thus, such ratio signatures are well suited for the characterization of synapses. In order to contribute to our understanding of both the molecular composition and the function of synapses, we also characterized a novel synaptic protein. This protein, Drep-2, is a member of the Dff family of regulators of apoptosis. We generated drep-2 mutants, which did not show an obvious misregulation of apoptosis. By contrast, Drep-2 was found to be a neuronal protein, highly enriched for example at postsynaptic receptor fields of the input synapses of the major learning centre of insects, the mushroom bodies. Flies mutant for drep-2 were viable but lived shorter than wildtypes. Basic synaptic transmission at both peripheral and central synapses was in normal ranges. However, drep-2 mutants showed a number of deficiencies in adaptive behaviours: adult flies were locomotor hyperactive and hypersensitive towards ethanol-induced sedation. Moreover, the mutant animals were heavily impaired in associative learning. In aversive olfactory conditioning, drep-2 mutants formed neither short-term nor anaesthesia-sensitive memories. We could demonstrate that Drep-2 is required in mushroom body intrinsic neurons for normal olfactory learning. Furthermore, odour-evoked calcium transients in these neurons, a prerequisite for learning, were reduced in drep-2 mutants. The impairment of the mutants in olfactory learning could be fully rescued by pharmacological application of an agonist to metabotropic glutamate receptors (mGluRs). Quantitative mass spectrometry of Drep-2 complexes revealed that the protein is associated with a large number of translational repressors, among them the fragile X mental retardation protein FMRP. FMRP inhibits mGluR-mediated protein synthesis. Lack of this protein causes the fragile X syndrome, which constitutes the most frequent monogenic cause of autism. Examination of the performance of drep-2 mutants in courtship conditioning showed that the animals were deficient in both short- and long-term memory. Drep-2 mutants share these phenotypes with fmrp and mGluR mutants. Interestingly, drep-2; fmrp double mutants exhibited normal memory. Thus, we propose a model in which Drep-2 antagonizes FMRP in the regulation of mGluR-dependent protein synthesis. Our hypothesis is supported by the observation that impairments in synaptic plasticity can arise if mGluR signalling is imbalanced in either direction. We suggest that Drep-2 helps in establishing this balance.}, subject = {Taufliege}, language = {en} } @phdthesis{Sommerlandt2017, author = {Sommerlandt, Frank M. J.}, title = {Mechanisms of visual memory formation in bees: About immediate early genes and synaptic plasticity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Animals form perceptual associations through processes of learning, and retain that information through mechanisms of memory. Honeybees and bumblebees are classic models for insect perception and learning, and despite their small brains with about one million neurons, they are organized in highly social colonies and possess an astonishing rich behavioral repertoire including navigation, communication and cognition. Honeybees are able to harvest hundreds of morphologically divergent flower types in a quick and efficient manner to gain nutrition and, back in the hive, communicate discovered food sources to nest mates. To accomplish such complex tasks, bees must be equipped with diverse sensory organs receptive to stimuli of different modalities and must be able to associatively learn and memorize the acquired information. Particularly color vision plays a prominent role, e.g. in navigation along landmarks and when bees identify inflorescences by their color signals. Once acquired, bees are known to retain visual information for days or even months. Numerous studies on visual perception and color vision have been conducted in the past decades and largely revealed the information processing pathways in the brain. In contrast, there are no data available on how the brain may change in the course of color learning experience and whether pathways differ for coarse and fine color learning. Although long-term memory (LTM) storage is assumed to generally include reorganization of the neuronal network, to date it is unclear where in the bee brain such changes occur in the course of color learning and whether visual memories are stored in one particular site or decentrally distributed over different brain domains. The present dissertation research aimed to dissect the visual memory trace in bees that is beyond mere stimulus processing and therefore two different approaches were elaborated: first, the application of immediate early genes (IEG) as genetic markers for neuronal activation to localize early processes underlying the formation of a stable LTM. Second, the analysis of late consequences of memory formation, including synaptic reorganization in central brain areas and dependencies of color discrimination complexity. Immediate early genes (IEG) are a group of rapidly and transiently expressed genes that are induced by various types of cellular stimulation. A great number of different IEGs are routinely used as markers for the localization of neuronal activation in vertebrate brains. The present dissertation research was dedicated to establish this approach for application in bees, with focus on the candidate genes Amjra and Amegr, which are orthologous to the two common vertebrate IEGs c-jun and egr-1. First the general requirement of gene transcription for visual LTM formation was proved. Bumblebees were trained in associative proboscis extension response (PER) conditioning to monochromatic light and subsequently injected with an inhibitor of gene transcription. Memory retention tests at different intervals revealed that gene transcription is not required for the formation of a mid-term memory, but for stable LTM. Next, the appliance of the candidate genes was validated. Honeybees were exposed to stimulation with either alarm pheromone or a light pulse, followed by qPCR analysis of gene expression. Both genes differed in their expression response to sensory exposure: Amjra was upregulated in all analyzed brain parts (antennal lobes, optic lobes and mushroom bodies, MB), independent from stimulus modality, suggesting the gene as a genetic marker for unspecific general arousal. In contrast, Amegr was not significantly affected by mere sensory exposure. Therefore, the relevance of associative learning on Amegr expression was assessed. Honeybees were trained in visual PER conditioning followed by a qPCR-based analysis of the expression of all three Amegr isoforms at different intervals after conditioning. No learning-dependent alteration of gene expression was observed. However, the presence of AmEgr protein in virtually all cerebral cell nuclei was validated by immunofluorescence staining. The most prominent immune-reactivity was detected in MB calyx neurons. Analysis of task-dependent neuronal correlates underlying visual long-term memory was conducted in free-flying honeybees confronted with either absolute conditioning to one of two perceptually similar colors or differential conditioning with both colors. Subsequent presentation of the two colors in non-rewarded discrimination tests revealed that only bees trained with differential conditioning preferred the previously learned color. In contrast, bees of the absolute conditioning group chose randomly among color stimuli. To investigate whether the observed difference in memory acquisition is also reflected at the level of synaptic microcircuits, so called microglomeruli (MG), within the visual domains of the MB calyces, MG distribution was quantified by whole-mount immunostaining three days following conditioning. Although learning-dependent differences in neuroarchitecture were absent, a significant correlation between learning performance and MG density was observed. Taken together, this dissertation research provides fundamental work on the potential use of IEGs as markers for neuronal activation and promotes future research approaches combining behaviorally relevant color learning tests in bees with examination of the neuroarchitecture to pave the way for unraveling the visual memory trace.}, subject = {Biene}, language = {en} } @phdthesis{Kapustjansky2011, author = {Kapustjansky, Alexander}, title = {In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus.}, subject = {Taufliege}, language = {en} } @phdthesis{Groh2005, author = {Groh, Claudia}, title = {Environmental influences on the development of the female honeybee brain Apis mellifera}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {F{\"u}r die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einfl{\"u}ssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem f{\"u}r diese Studie, um die Entwicklung und Funktion neuronaler Plastizit{\"a}t im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen K{\"o}niginnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizit{\"a}t. Diploide Eier, aus denen sich K{\"o}niginnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich K{\"o}niginnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago gr{\"o}ßer, leben wesentlich l{\"a}nger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale F{\"u}tterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen {\"u}ber eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. M{\"o}gliche neuronale Korrelate f{\"u}r altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf prim{\"a}re (Antennalloben) und sekund{\"a}re (Pilzk{\"o}rper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzf{\"a}rbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgef{\"u}hrt. Diese Doppelmarkierung erm{\"o}glichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzk{\"o}rper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird w{\"a}hrend der Entwicklung in Wachstumskegeln und in adulten Gehirnen in pr{\"a}synaptischen Endigungen und dendritischen Dornen exprimiert. Pr{\"a}synaptische Elemente wurden durch den Einsatz eines spezifischen Antik{\"o}rpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte r{\"a}umliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Pr{\"a}parate realisiert. Anhand dieser Methodik konnten erstmals {\"u}ber reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizit{\"a}t im Pilzk{\"o}rper-Calyx durchgef{\"u}hrt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizit{\"a}t des Gehirns der Honigbiene. Entsprechend der k{\"u}rzeren Puppenphase der K{\"o}niginnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage fr{\"u}her aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzk{\"o}rper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei K{\"o}niginnen. Diese neuronale Strukturplastizit{\"a}t auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse {\"u}ber den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, w{\"a}hrend der Puppenphase auf die synaptische Organisation der adulten Pilzk{\"o}rper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei K{\"o}niginnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizit{\"a}t zeigt diese Studie eine starke altersbedingte Strukturplastizit{\"a}t der MG w{\"a}hrend der relativ langen Lebensdauer von Bienenk{\"o}niginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55\%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33\%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizit{\"a}t sowie altersbedingte synaptische Strukturplastizit{\"a}t in den sensorischen Eingangsregionen der Pilzk{\"o}rper-Calyces k{\"o}nnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen.}, subject = {Biene}, language = {en} } @phdthesis{Aso2010, author = {Aso, Yoshinori}, title = {Dissecting the neuronal circuit for olfactory learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, "General introduction and discussion" section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila.}, subject = {Taufliege}, language = {en} }