@phdthesis{Gupta2012, author = {Gupta, Shuchi}, title = {The role of the Canonical transient receptor potential 6 (TRPC6) channel and the C terminal LIM domain protein of 36 kDa (CLP36) for platelet function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72262}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury, but also contribute to arterial thrombosis, leading to myocardial infarction and stroke. Thrombus formation is the result of well-defined molecular events, including agonist-induced elevation of intracellular calcium ([Ca2+]i) and series of cytoskeletal rearrangements. With the help of genetically modified mice, the work presented in this thesis identified novel mechanisms underlying the process of platelet activation in hemostasis and thrombosis. Store-operated calcium entry (SOCE) through Orai1 was previously shown to be the main Ca2+ influx pathway in murine platelets. The residual Ca2+ entry in the Orai1 deficient platelets suggested a role for additional non-store-operated Ca2+ (non-SOC) and receptor operated Ca2+ entry (ROCE) in maintaining platelet calcium homeostasis. Canonical transient receptor potential channel 6 (TRPC6), which is expressed in both human and murine platelets, has been attributed to be involved in SOCE as well as in diacylglycerol (DAG)-triggered ROCE. In the first part of the study, the function of TRPC6 in platelet Ca2+ signaling and activation was analyzed by using the TRPC6 knockout mice. In vitro agonist induced Ca2+ responses and in vivo platelet function were unaltered in Trpc6-/- mice. However, Trpc6-/- mice displayed a completely abolished DAG mediated Ca2+-influx but a normal SOCE. These findings identified TRPC6 as the major DAG operated ROC channel in murine platelets, but DAG mediated ROCE has no major functional relevance for hemostasis and thrombosis. In the second part of the thesis, the involvement of the PDLIM family member CLP36 in the signaling pathway of the major platelet collagen receptor glycoprotein (GP) VI was investigated. The GPVI/FcR-chain complex initiates platelet activation through a series of tyrosine phosphorylation events downstream of the FcR-chain-associated immunoreceptor tyrosine-based activation motif (ITAM). GPVI signaling has to be tightly regulated to prevent uncontrolled intravascular platelet activation, but the underlying mechanisms are not fully understood. The present study reports the adaptor protein CLP36 as a major inhibitor of GPVI-ITAM signaling in platelets. Platelets from mice expressing a truncated form of CLP36, (Clp36ΔLIM) and platelets from mice lacking the entire protein (Clp36-/-) displayed profound hyper-activation in response to GPVI-specific agonists, whereas GPCR signaling pathways remained unaffected. These alterations translated into accelerated thrombus formation and enhanced pro-coagulant activity of Clp36ΔLIM platelets and a pro-thrombotic phenotype in vivo. These studies revealed an unexpected inhibitory function of CLP36 in GPVI-ITAM signaling and established it as a key regulator of arterial thrombosis.}, subject = {Thrombozytenaggregation}, language = {en} } @phdthesis{Cherpokova2017, author = {Cherpokova, Deya}, title = {Studies on modulators of platelet (hem)ITAM signaling and platelet production in genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Summary Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic disease states, such as myocardial infarction and stroke. Glycoprotein (GP) VI and C type lectin-like receptor 2 (CLEC-2) are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter protein (SLAP) and SLAP2 are involved in the regulation of immune cell receptor surface expression and signaling, but their function in platelets is unknown. As revealed in this thesis, single deficiency of SLAP or SLAP2 in mice had only moderate effects on platelet function, while SLAP/SLAP2 double deficiency resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity and thrombin generation following (hem)ITAM-coupled, but not G protein-coupled receptor activation. Slap-/-/Slap2-/- mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. These results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. GPVI has emerged as a promising novel pharmacological target for treatment of thrombotic and inflammatory disease states, but the exact mechanisms of its immunodepletion in vivo are incompletely understood. It was hypothesized that SLAP and SLAP2 may be involved in the control of GPVI down-regulation because of their role in the internalization of immune cell receptors. As demonstrated in the second part of the thesis, SLAP and SLAP2 were dispensable for antibody-induced GPVI down-regulation, but anti-GPVI treatment resulted in prolonged strong thrombocytopenia in Slap-/-/Slap2-/- mice. The profound thrombocytopenia likely resulted from the powerful platelet activation which the anti-GPVI antibody induced in Slap-/-/Slap2-/- platelets, but importantly, not in wild-type platelets. These data indicate that the expression and activation state of key modulators of the GPVI signaling cascade may have important implications for the safety profile and efficacy of anti-GPVI agents. Small GTPases of the Rho family, such as RhoA and Cdc42, are critically involved in the regulation of cytoskeletal rearrangements during platelet activation, but little is known about the specific roles and functional redundancy of both proteins in platelet biogenesis. As shown in the final part of the thesis, combined deficiency of RhoA and Cdc42 led to marked alterations in megakaryocyte morphology and the generation of platelets of heterogeneous size and granule content. Despite severe hemostatic defects and profound thrombo¬cytopenia, circulating RhoA-/-/Cdc42-/- platelets were still capable of granule secretion and the formation of occlusive thrombi. These results implicate the existence of both distinct and overlapping roles of RhoA and Cdc42 in platelet production and function.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Cherpokova2023, author = {Cherpokova, Deya}, title = {Studies on modulators of platelet (hem)ITAM signaling and platelet production in genetically modified mice}, doi = {10.25972/OPUS-30377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Summary Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic disease states, such as myocardial infarction and stroke. Glycoprotein (GP) VI and C type lectin-like receptor 2 (CLEC-2) are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter protein (SLAP) and SLAP2 are involved in the regulation of immune cell receptor surface expression and signaling, but their function in platelets is unknown. As revealed in this thesis, single deficiency of SLAP or SLAP2 in mice had only moderate effects on platelet function, while SLAP/SLAP2 double deficiency resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity and thrombin generation following (hem)ITAM-coupled, but not G protein-coupled receptor activation. Slap-/-/Slap2-/- mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. These results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. GPVI has emerged as a promising novel pharmacological target for treatment of thrombotic and inflammatory disease states, but the exact mechanisms of its immunodepletion in vivo are incompletely understood. It was hypothesized that SLAP and SLAP2 may be involved in the control of GPVI down-regulation because of their role in the internalization of immune cell receptors. As demonstrated in the second part of the thesis, SLAP and SLAP2 were dispensable for antibody-induced GPVI down-regulation, but anti-GPVI treatment resulted in prolonged strong thrombocytopenia in Slap-/-/Slap2-/- mice. The profound thrombocytopenia likely resulted from the powerful platelet activation which the anti-GPVI antibody induced in Slap-/-/Slap2-/- platelets, but importantly, not in wild-type platelets. These data indicate that the expression and activation state of key modulators of the GPVI signaling cascade may have important implications for the safety profile and efficacy of anti-GPVI agents. Small GTPases of the Rho family, such as RhoA and Cdc42, are critically involved in the regulation of cytoskeletal rearrangements during platelet activation, but little is known about the specific roles and functional redundancy of both proteins in platelet biogenesis. As shown in the final part of the thesis, combined deficiency of RhoA and Cdc42 led to marked alterations in megakaryocyte morphology and the generation of platelets of heterogeneous size and granule content. Despite severe hemostatic defects and profound thrombo¬cytopenia, circulating RhoA-/-/Cdc42-/- platelets were still capable of granule secretion and the formation of occlusive thrombi. These results implicate the existence of both distinct and overlapping roles of RhoA and Cdc42 in platelet production and function.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Lorenz2018, author = {Lorenz, Viola}, title = {Cellular regulation of the hemITAM-coupled platelet receptor C-type lectin-like receptor 2 (CLEC-2): In vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelet aggregation at sites of vascular injury is essential to limit posttraumatic blood loss, but may also cause acute ischemic disease states such as myocardial infarction or stroke. Stable thrombus formation requires a series of molecular events involving platelet receptors and intracellular signal transduction, which contribute to adhesion, activation and aggregation of platelets. In this thesis, the cellular regulation of platelet surface receptors and their involvement in thrombus formation was investigated using genetically modified mice. In the first part of the study, the functional relevance of the immunoreceptor tyrosine-based activation motif (ITAM)-coupled collagen receptor GPVI and of the recently identified hemITAM-bearing C-type lectin-like receptor 2 (CLEC-2) for in vivo thrombus formation was analyzed. Megakaryocyte/ platelet-specific CLEC-2 knock out mice displayed a defective lymphatic development and were protected from occlusive arterial thrombus formation. These phenotypes were more pronounced in mice with a GPVI/CLEC-2 double deficiency. Hemostasis was not compromised in CLEC-2 or GPVI single-deficient animals, as they showed only mildly prolonged tail bleeding times. Combined depletion of both receptors resulted in markedly prolonged bleeding times revealing an unexpected redundant function of the two receptors in hemostasis as well as thrombosis. These findings might have important implications for the development of anti-CLEC-2/ anti-GPVI agents as therapeutics. In the second part, mechanisms underlying the cellular regulation of CLEC-2 were studied. Previous studies have shown that injection of the anti-CLEC-2 antibody INU1 results in complete immunodepletion of platelet CLEC-2 in mice, which is preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. It is demonstrated that INU1-induced CLEC-2 immunodepletion occurs through Src family kinase (SFK)-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with spleen tyrosine kinase (Syk) deficiency, INU1-induced CLEC-2 internalization/ degradation was fully preserved, whereas the associated thrombocytopenia was largely prevented. These results show that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia. Since INU1 IgG induced a pronounced thrombocytopenia, the in vivo effects of monovalent INU1 F(ab) fragments were analyzed. Very unexpectedly, injection of the F(ab) fragments resulted in widespread thrombus formation leading to persistent neurological deficits of the animals. This intravascular thrombus formation is the result of CLEC-2-dependent platelet activation and aggregation. The mechanism underlying the thrombus formation is still unknown and depends potentially on binding of a yet unidentified ligand to F(ab)-opsonized CLEC-2 on platelets.}, subject = {Thrombozytenaggregation}, language = {en} }