@article{AndersenBogstedDybkaretal.2015, author = {Andersen, Jens Peter and B{\o}gsted, Martin and Dybk{\ae}r, Karen and Mellqvist, Ulf-Henrik and Morgan, Gareth J. and Goldschmidt, Hartmut and Dimopoulos, Meletios A. and Einsele, Hermann and San Miguel, Jes{\´u}s and Palumbo, Antonio and Sonneveld, Pieter and Johnsen, Hans Erik}, title = {Global myeloma research clusters, output, and citations: a bibliometric mapping and clustering analysis}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0116966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144214}, pages = {e0116966}, year = {2015}, abstract = {Background International collaborative research is a mechanism for improving the development of disease-specific therapies and for improving health at the population level. However, limited data are available to assess the trends in research output related to orphan diseases. Methods and Findings We used bibliometric mapping and clustering methods to illustrate the level of fragmentation in myeloma research and the development of collaborative efforts. Publication data from Thomson Reuters Web of Science were retrieved for 2005-2009 and followed until 2013. We created a database of multiple myeloma publications, and we analysed impact and co-authorship density to identify scientific collaborations, developments, and international key players over time. The global annual publication volume for studies on multiple myeloma increased from 1,144 in 2005 to 1,628 in 2009, which represents a 43\% increase. This increase is high compared to the 24\% and 14\% increases observed for lymphoma and leukaemia. The major proportion (> 90\% of publications) was from the US and EU over the study period. The output and impact in terms of citations, identified several successful groups with a large number of intra-cluster collaborations in the US and EU. The US-based myeloma clusters clearly stand out as the most productive and highly cited, and the European Myeloma Network members exhibited a doubling of collaborative publications from 2005 to 2009, still increasing up to 2013. Conclusion and Perspective Multiple myeloma research output has increased substantially in the past decade. The fragmented European myeloma research activities based on national or regional groups are progressing, but they require a broad range of targeted research investments to improve multiple myeloma health care.}, language = {en} } @article{DimopoulosWeiselSongetal.2015, author = {Dimopoulos, Meletios A. and Weisel, Katja C. and Song, Kevin W. and Delforge, Michel and Karlin, Lionel and Goldschmidt, Hartmut and Moreau, Philippe and Banos, Anne and Oriol, Albert and Garderet, Laurent and Cavo, Michele and Ivanova, Valentina and Alegre, Adrian and Martinez-Lopez, Joaquin and Chen, Christine and Spencer, Andrew and Knop, Stefan and Bahlis, Nizar J. and Renner, Christoph and Yu, Xin and Hong, Kevin and Sternas, Lars and Jacques, Christian and Zaki, Mohamed H. and San Miguel, Jesus F.}, title = {Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone}, series = {Haematologica}, volume = {100}, journal = {Haematologica}, number = {10}, doi = {10.3324/haematol.2014.117077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140349}, pages = {1327 -- 1333}, year = {2015}, abstract = {Patients with refractory or relapsed and refractory multiple myeloma who no longer receive benefit from novel agents have limited treatment options and short expected survival. del(17p) and t(4;14) are correlated with shortened survival. The phase 3 MM-003 trial demonstrated significant progression-free and overall survival benefits from treatment with pomalidomide plus low-dose dexamethasone compared to high-dose dexamethasone among patients in whom bortezomib and lenalidomide treatment had failed. At an updated median follow-up of 15.4 months, the progression-free survival was 4.0 versus 1.9 months (HR, 0.50; P<0.001), and median overall survival was 13.1 versus 8.1 months (HR, 0.72; P=0.009). Pomalidomide plus low-dose dexamethasone, compared with high-dose dexamethasone, improved progression-free survival in patients with del(17p) (4.6 versus 1.1 months; HR, 0.34; P < 0.001), t(4;14) (2.8 versus 1.9 months; HR, 0.49; P=0.028), and in standard-risk patients (4.2 versus 2.3 months; HR, 0.55; P<0.001). Although the majority of patients treated with high-dose dexamethasone took pomalidomide after discontinuation, the overall survival of patients treated with pomalidomide plus low-dose dexamethasone or highdose dexamethasone was 12.6 versus 7.7 months (HR, 0.45; P=0.008) in patients with del(17p), 7.5 versus 4.9 months (HR, 1.12; P=0.761) in those with t(4;14), and 14.0 versus 9.0 months (HR, 0.85; P=0.380) in standard-risk subjects. The overall response rate was higher in patients treated with pomalidomide plus low-dose dexamethasone than in those treated with high-dose dexamethasone both among standard-risk patients (35.2\% versus 9.7\%) and those with del(17p) (31.8\% versus 4.3\%), whereas it was similar in patients with t(4; 14) (15.9\% versus 13.3\%). The safety of pomalidomide plus low-dose dexamethasone was consistent with initial reports. In conclusion, pomalidomide plus low-dose dexamethasone is efficacious in patients with relapsed/refractory multiple myeloma and del(17p) and/or t(4;14).}, language = {en} }