@article{ScheitlOkudaAdelmannetal.2023, author = {Scheitl, Carolin P. M. and Okuda, Takumi and Adelmann, Juliane and H{\"o}bartner, Claudia}, title = {Ribozyme-catalyzed late-stage functionalization and fluorogenic labeling of RNA}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202305463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327543}, year = {2023}, abstract = {Site-specific introduction of biorthogonal handles into RNAs is in high demand for decorating RNAs with fluorophores, affinity labels or other modifications. Aldehydes represent attractive functional groups for post-synthetic bioconjugation reactions. Here, we report a ribozyme-based method for the synthesis of aldehyde-functionalized RNA by directly converting a purine nucleobase. Using the methyltransferase ribozyme MTR1 as an alkyltransferase, the reaction is initiated by site-specific N1 benzylation of purine, followed by nucleophilic ring opening and spontaneous hydrolysis under mild conditions to yield a 5-amino-4-formylimidazole residue in good yields. The modified nucleotide is accessible to aldehyde-reactive probes, as demonstrated by the conjugation of biotin or fluorescent dyes to short synthetic RNAs and tRNA transcripts. Upon fluorogenic condensation with a 2,3,3-trimethylindole, a novel hemicyanine chromophore was generated directly on the RNA. This work expands the MTR1 ribozyme's area of application from a methyltransferase to a tool for site-specific late-stage functionalization of RNA.}, language = {en} } @unpublished{SeitzJungnickelKleiberetal.2024, author = {Seitz, Florian and Jungnickel, Tina and Kleiber, Nicole and Kretschmer, Jens and Dietzsch, Julia and Adelmann, Juliane and Bohnsack, Katherine E. and Bohnsack, Markus T. and H{\"o}bartner, Claudia}, title = {Atomic mutagenesis of N\(^6\)-methyladenosine reveals distinct recognition modes by human m\(^6\)A reader and eraser proteins}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.4c00626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352376}, year = {2024}, abstract = {N\(^6\)-methyladenosine (m\(^6\)A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m\(^6\)A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m\(^6\)A by proteins. Here, we use atomic mutagenesis of m\(^6\)A to systematically investigate the mechanisms of the two human m\(^6\)A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m\(^6\)A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m\(^6\)A analogues introduced in this work will be useful probes for other proteins in m\(^6\)A research.}, language = {en} }