@phdthesis{Hofmann2022, author = {Hofmann, Adrian}, title = {Challenges and Solution Approaches for Blockchain Technology}, doi = {10.25972/OPUS-28261}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The digital transformation facilitates new forms of collaboration between companies along the supply chain and between companies and consumers. Besides sharing information on centralized platforms, blockchain technology is often regarded as a potential basis for this kind of collaboration. However, there is much hype surrounding the technology due to the rising popularity of cryptocurrencies, decentralized finance (DeFi), and non-fungible tokens (NFTs). This leads to potential issues being overlooked. Therefore, this thesis aims to investigate, highlight, and address the current weaknesses of blockchain technology: Inefficient consensus, privacy, smart contract security, and scalability. First, to provide a foundation, the four key challenges are introduced, and the research objectives are defined, followed by a brief presentation of the preliminary work for this thesis. The following four parts highlight the four main problem areas of blockchain. Using big data analytics, we extracted and analyzed the blockchain data of six major blockchains to identify potential weaknesses in their consensus algorithm. To improve smart contract security, we classified smart contract functionalities to identify similarities in structure and design. The resulting taxonomy serves as a basis for future standardization efforts for security-relevant features, such as safe math functions and oracle services. To challenge privacy assumptions, we researched consortium blockchains from an adversary role. We chose four blockchains with misconfigured nodes and extracted as much information from those nodes as possible. Finally, we compared scalability solutions for blockchain applications and developed a decision process that serves as a guideline to improve the scalability of their applications. Building on the scalability framework, we showcase three potential applications for blockchain technology. First, we develop a token-based approach for inter-company value stream mapping. By only relying on simple tokens instead of complex smart-contracts, the computational load on the network is expected to be much lower compared to other solutions. The following two solutions use offloading transactions and computations from the main blockchain. The first approach uses secure multiparty computation to offload the matching of supply and demand for manufacturing capacities to a trustless network. The transaction is written to the main blockchain only after the match is made. The second approach uses the concept of payment channel networks to enable high-frequency bidirectional micropayments for WiFi sharing. The host gets paid for every second of data usage through an off-chain channel. The full payment is only written to the blockchain after the connection to the client gets terminated. Finally, the thesis concludes by briefly summarizing and discussing the results and providing avenues for further research.}, subject = {Blockchain}, language = {en} } @article{HermJanieschHelmetal.2023, author = {Herm, Lukas-Valentin and Janiesch, Christian and Helm, Alexander and Imgrund, Florian and Hofmann, Adrian and Winkelmann, Axel}, title = {A framework for implementing robotic process automation projects}, series = {Information Systems and e-Business Management}, volume = {21}, journal = {Information Systems and e-Business Management}, number = {1}, issn = {1617-9846}, doi = {10.1007/s10257-022-00553-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323798}, pages = {1-35}, year = {2023}, abstract = {Robotic process automation is a disruptive technology to automate already digital yet manual tasks and subprocesses as well as whole business processes rapidly. In contrast to other process automation technologies, robotic process automation is lightweight and only accesses the presentation layer of IT systems to mimic human behavior. Due to the novelty of robotic process automation and the varying approaches when implementing the technology, there are reports that up to 50\% of robotic process automation projects fail. To tackle this issue, we use a design science research approach to develop a framework for the implementation of robotic process automation projects. We analyzed 35 reports on real-life projects to derive a preliminary sequential model. Then, we performed multiple expert interviews and workshops to validate and refine our model. The result is a framework with variable stages that offers guidelines with enough flexibility to be applicable in complex and heterogeneous corporate environments as well as for small and medium-sized companies. It is structured by the three phases of initialization, implementation, and scaling. They comprise eleven stages relevant during a project and as a continuous cycle spanning individual projects. Together they structure how to manage knowledge and support processes for the execution of robotic process automation implementation projects.}, language = {en} }