@article{SawatzkyDrakopoulosRoelzetal.2016, author = {Sawatzky, Edgar and Drakopoulos, Antonios and R{\"o}lz, Martin and Sotriffer, Christoph and Engels, Bernd and Decker, Michael}, title = {Experimental and theoretical investigations into the stability of cyclic aminals}, series = {Beilstein Journal of Organic Chemistry}, volume = {12}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.12.221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160976}, pages = {2280-2292}, year = {2016}, abstract = {Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking. Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM) and density functional theory (DFT) based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pK a values of the N-3 nitrogen atom. Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account.}, language = {en} } @phdthesis{Sawatzky2016, author = {Sawatzky, Edgar}, title = {Design und Synthese selektiver Butyrylcholinesterase (BChE) Inhibitoren zur Entwicklung von Radiopharmazeutika zur Erforschung der Alzheimer Erkrankung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Although the physiological roles of BChE are not yet determined to date, the importance of this enzyme is continuously increasing as it was found to be associated with several disorders like diabetes mellitus type 2, cardiovascular diseases, obesity and especially with Alzheimer's disease (AD). In consequence, for investigations of BChE's pathological role in these diseases and to find new medication strategies, the development of selective and potent inhibitors is necessary. For this purpose, the current work progresses in five chapters on the exploration of the chemical, physical and biochemical properties of tetrahydroquinazoline based carbamates which were previously reported to be selective BChE inhibitors with potency in the low nanomolar range. 1) A Novel Way to Radiolabel Human Butyrylcholinesterase for PET through Irreversible Transfer of the Radiolabeled Moiety: PET-radiotracers represent an innovative tool to determine the distribution and the expression of a biological target in vivo. BChE lacks to a large degree of such tracers with a few exceptions. In this work, methods were developed to incorporate the radioisotopes 11C and 18F into the carbamate moiety of an tetrahydroquinazoline based inhibitor. In contrast to reversibly acting PET-probes, the described radiotracers were proven by kinetic studies to transfer the radioisotope covalently onto the active site of BChE, thus labeling the enzyme directly and permanently. 2) Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode: To investigate the role of the tetrahydroquinazoline carrier scaffold on BChE inhibition, carbamate based inhibitors were synthesized. These compounds were successively used to perform kinetic investigations to determine their inhibition mode. Based on these data, a plausible binding model was postulated explaining the influence of the tetrahydroquinazoline carrier scaffold for binding at BChE's active site just before carbamate transfer takes place. Additionally, these compounds feature neuroprotective properties and prevent oxidative stress induced cell death in their carbamate form as well as after the release of the tetrahydroquinazoline carrier scaffold. 3) Dual Addressing of Butyrylcholinesterase by Targeting the Catalytic Active Site (CAS) and the Peripheral Anionic Site (PAS): Compounds which are dual-targeting the CAS and the PAS of BChE are the most potent and selective BChE inhibitors to date with inhibition values in the picomolar range. In this work, a strategy is described how to turn tetrahydroquinazoline based carbamates into dual binding BChE inhibitors. These inhibitors feature a carbamate moiety which is covalently transferred onto the CAS of BChE, and in addition provide a second pharmacophore connected via a linker to the carbamate moiety which is proposed to target the PAS. Preliminary results reveal a high tolerance of BChE towards different linker lengths without decrease in affinity. 4) Investigation into Selective Debenzylation and Ring Cleavage of Quinazoline based Heterocycles: The tetrahydroquinazoline system is well investigated in terms of its synthesis and its selective oxidation. To explore the reactivity of this system, a tetracyclic tetrahydroquinazoline was exposed to common reduction agents. These experiments revealed a high sensitivity of the tetrahydroquinazoline core towards several reduction conditions 5) Experimental and Theoretical Investigation into the Stability of Cyclic Aminals: Tetrahydroquinazolines are known to degrade in acidic media through hydrolysis of their aminal system; but literature is lacking of a systematic investigation into this behavior. Therefore, different tetrahydroquinazolines were synthesized and exposed to phosphate buffered systems with defined pH-values. A clear increase of the hydrolysis rate of the aminal system was determined in dependency of an increasing acidic media. Computational studies predicted and experimental studies proved that hydrolysis takes place in an acidic environment while the condensation of this system is preferred in neutral or basic aqueous media.}, subject = {Cholinesterase}, language = {en} }