@article{BunzmannKrugmannWeissenseeletal.2021, author = {Bunzmann, Nikolai and Krugmann, Benjamin and Weissenseel, Sebastian and Kudriashova, Liudmila and Ivaniuk, Khrystyna and Stakhira, Pavlo and Cherpak, Vladyslav and Chapran, Marian and Grybauskaite-Kaminskiene, Gintare and Grazulevicius, Juozas Vidas and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Spin- and Voltage-Dependent Emission from Intra- and Intermolecular TADF OLEDs}, series = {Advanced Electronic Materials}, volume = {7}, journal = {Advanced Electronic Materials}, number = {3}, doi = {10.1002/aelm.202000702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224434}, year = {2021}, abstract = {Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′-(9H,9′H-[3,3′-bicarbazole]-9,9′-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). Orange emitting exciplex-based OLEDs additionally generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra- and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.}, language = {en} } @article{WeissenseelGottschollBoennighausenetal.2021, author = {Weissenseel, Sebastian and Gottscholl, Andreas and B{\"o}nnighausen, Rebecca and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {47}, doi = {10.1126/sciadv.abj9961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265508}, year = {2021}, abstract = {Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.}, language = {en} }