@article{DannerKellerHaerteletal.2017, author = {Danner, Nadja and Keller, Alexander and H{\"a}rtel, Stephan and Steffan-Dewenter, Ingolf}, title = {Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0183716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170424}, pages = {e0183716}, year = {2017}, abstract = {The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.}, language = {en} } @article{KaluzaWallaceKelleretal.2017, author = {Kaluza, Benjamin F. and Wallace, Helen and Keller, Alexander and Heard, Tim A. and Jeffers, Bradley and Drescher, Nora and Bl{\"u}thgen, Nico and Leonhardt, Sara D.}, title = {Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments}, series = {Ecosphere}, volume = {8}, journal = {Ecosphere}, number = {3}, doi = {10.1002/ecs2.1758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171155}, pages = {e01758}, year = {2017}, abstract = {Numerous studies revealed a positive relationship between biodiversity and ecosystem functioning, suggesting that biodiverse environments may not only enhance ecosystem processes, but also benefit individual ecosystem members by, for example, providing a higher diversity of resources. Whether and how the number of available resources affects resource collection and subsequently consumers (e.g., through impacting functions associated with resources) have, however, been little investigated, although a better understanding of this relationship may help explain why the abundance and richness of many animal species typically decline with decreasing plant (resource) diversity. Using a social bee species as model (Tetragonula carbonaria), we investigated how plant species richness—recorded for study sites located in different habitats—and associated resource abundance affected the diversity and functionality (here defined as nutritional content and antimicrobial activity) of resources (i.e., pollen, nectar, and resin) collected by a generalist herbivorous consumer. The diversity of both pollen and resin collected strongly increased with increasing plant/tree species richness, while resource abundance was only positively correlated with resin diversity. These findings suggest that bees maximize resource diversity intake in (resource) diverse habitats. Collecting more diverse resources did, however, not increase their functionality, which appeared to be primarily driven by the surrounding (plant) source community in our study. In generalist herbivores, maximizing resource diversity intake may therefore primarily secure collection of sufficient amounts of resources across the entire foraging season, but it also ensures that the allocated resources meet all functional needs. Decreasing available resource diversity may thus impact consumers primarily by reduced resource abundance, but also by reduced resource functionality, particularly when resources of high functionality (e.g., from specific plant species) become scarce.}, language = {en} }