@article{KaiserSauerKisker2017, author = {Kaiser, Sebastian and Sauer, Florian and Kisker, Caroline}, title = {The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15907}, doi = {10.1038/ncomms15907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170769}, year = {2017}, abstract = {RecQ4 is a member of the RecQ helicase family, an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair and replication. While reduced RecQ4 activity is associated with cancer predisposition and premature aging, RecQ4 upregulation is related to carcinogenesis and metastasis. Within the RecQ family, RecQ4 assumes an exceptional position, lacking several characteristic RecQ domains. Here we present the crystal structure of human RecQ4, encompassing the conserved ATPase core and a novel C-terminal domain that lacks resemblance to the RQC domain observed in other RecQ helicases. The new domain features a zinc-binding site and two distinct types of winged-helix domains, which are not involved in canonical DNA binding or helicase activity. Based on our structural and functional analysis, we propose that RecQ4 exerts a helicase mechanism, which may be more closely related to bacterial RecQ helicases than to its human family members.}, language = {en} } @article{RaduSchoenwetterBraunetal.2017, author = {Radu, Laura and Schoenwetter, Elisabeth and Braun, Cathy and Marcoux, Julien and Koelmel, Wolfgang and Schmitt, Dominik R. and Kuper, Jochen and Cianf{\´e}rani, Sarah and Egly, Jean M. and Poterszman, Arnaud and Kisker, Caroline}, title = {The intricate network between the p34 and p44 subunits is central to the activity of the transcription/DNA repair factor TFIIH}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {18}, doi = {10.1093/nar/gkx743}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170173}, pages = {10872-10883}, year = {2017}, abstract = {The general transcription factor IIH (TFIIH) is a multi-protein complex and its 10 subunits are engaged in an intricate protein-protein interaction network critical for the regulation of its transcription and DNA repair activities that are so far little understood on a molecular level. In this study, we focused on the p44 and the p34 subunits, which are central for the structural integrity of core-TFIIH. We solved crystal structures of a complex formed by the p34 N-terminal vWA and p44 C-terminal zinc binding domains from Chaetomium thermophilum and from Homo sapiens. Intriguingly, our functional analyses clearly revealed the presence of a second interface located in the C-terminal zinc binding region of p34, which can rescue a disrupted interaction between the p34 vWA and the p44 RING domain. In addition, we demonstrate that the C-terminal zinc binding domain of p34 assumes a central role with respect to the stability and function of TFIIH. Our data reveal a redundant interaction network within core-TFIIH, which may serve to minimize the susceptibility to mutational impairment. This provides first insights why so far no mutations in the p34 or p44 TFIIH-core subunits have been identified that would lead to the hallmark nucleotide excision repair syndromes xeroderma pigmentosum or trichothiodystrophy.}, language = {en} } @article{FischerHarrisonRamirezetal.2017, author = {Fischer, Annette and Harrison, Kelly S and Ramirez, Yesid and Auer, Daniela and Chowdhury, Suvagata Roy and Prusty, Bhupesh K and Sauer, Florian and Dimond, Zoe and Kisker, Caroline and Hefty, P Scott and Rudel, Thomas}, title = {Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e21465}, doi = {10.7554/eLife.21465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171073}, year = {2017}, abstract = {Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense.}, language = {en} }