@article{RufFraunholzOechsneretal.2017, author = {Ruf, Franziska and Fraunholz, Martin and {\"O}chsner, Konrad and Kaderschabeck, Johann and Wegener, Christian}, title = {WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0180238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170755}, pages = {e0180238}, year = {2017}, abstract = {Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity.}, language = {en} } @article{SelchoMillanPalaciosMunozetal.2017, author = {Selcho, Mareike and Mill{\´a}n, Carola and Palacios-Mu{\~n}oz, Angelina and Ruf, Franziska and Ubillo, Lilian and Chen, Jiangtian and Bergmann, Gregor and Ito, Chihiro and Silva, Valeria and Wegener, Christian and Ewer, John}, title = {Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15563}, doi = {10.1038/ncomms15563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170831}, year = {2017}, abstract = {Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.}, language = {en} }