@unpublished{LindnerSultangaleevaRoehretal.2019, author = {Lindner, Joachim O. and Sultangaleeva, Karina and R{\"o}hr, Merle I. S. and Mitric, Roland}, title = {metaFALCON: A program package for automatic sampling of conical intersection seams using multistate metadynamics}, series = {Journal of Chemical Theory and Computation}, journal = {Journal of Chemical Theory and Computation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199258}, year = {2019}, abstract = {The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is presented. Based on a locally modified energy gap between two Born-Oppenheimer electronic states as a collective variable, multistate metadynamics trajectories are driven toward an intersection point starting from an arbitrary ground state geometry and are subsequently forced to explore the conical intersection seam landscape. For this purpose, an additional collective variable capable of distinguishing structures within the seam needs to be defined and an additional bias is introduced into the off-diagonal elements of an extended (multistate) electronic Hamiltonian. We demonstrate the performance of the algorithm on the examples of the 1,3-butadiene, benzene, and 9H-adenine molecules, where multiple minimum energy crossing points could be systematically located using the Wiener number or Cremer-Pople parameters as collective variables. Finally, with the example of 9H-adenine, we show that the multistate metadynamics potential can be used to obtain a global picture of a conical intersection seam. Our method can be straightforwardly connected with any ab initio or semiempirical electronic structure theory that provides energies and gradients of the respective electronic states and can serve for systematic elucidation of the role of conical intersections in the photophysics and photochemistry of complex molecular systems, thus complementing nonadiabatic dynamics simulations.}, language = {en} } @unpublished{LisinetskayaMitric2019, author = {Lisinetskaya, Polina G. and Mitric, Roland}, title = {Collective Response in DNA-Stabilized Silver Cluster Assemblies from First-Principles Simulations}, series = {The Journal of Physical Chemistry Letters}, journal = {The Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198729}, year = {2019}, abstract = {We investigate fluorescence resonant energy transfer and concurrent electron dynamics in a pair of DNA-stabilized silver clusters. For this purpose we introduce a methodology for the simulation of collective optoelectronic properties of coupled molecular aggregates starting from first-principles quantum chemistry, which can be further applied to a broad range of coupled molecular systems to study their electro-optical response. Our simulations reveal the existence of low-energy coupled excitonic states, which enable ultrafast energy transport between subunits, and give insight into the origin of the fluorescence signal in coupled DNA-stabilized silver clusters, which have been recently experimentally detected. Hence, we demonstrate the possibility of constructing ultrasmall energy transmission lines and optical converters based on these hybrid molecular systems.}, language = {en} } @unpublished{RoederPetersenIssleretal.2019, author = {R{\"o}der, Anja and Petersen, Jens and Issler, Kevin and Fischer, Ingo and Mitric, Roland and Poisson, Lionel}, title = {Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals and Carbenes using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations}, series = {The Journal of Physical Chemistry A}, journal = {The Journal of Physical Chemistry A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198734}, year = {2019}, abstract = {Reactive hydrocarbon molecules like radicals, biradicals and carbenes are not only key players in combustion processes and interstellar and atmospheric chemistry, but some of them are also important intermediates in organic synthesis. These systems typically possess many low-lying, strongly coupled electronic states. After light absorption, this leads to rich photodynamics characterized by a complex interplay of nuclear and electronic motion, which is still not comprehensively understood and not easy to investigate both experimentally and theoretically. In order to elucidate trends and contribute to a more general understanding, we here review our recent work on excited-state dynamics of open-shell hydrocarbon species using time-resolved photoelectron spectroscopy and field-induced surface hopping simulations, and report new results on the excited-state dynamics of the tropyl and the 1-methylallyl radical. The different dynamics are compared, and the difficulties and future directions of time-resolved photoelectron spectroscopy and excited state dynamics simulations of open-shell hydrocarbon molecules are discussed.}, language = {en} } @unpublished{AuerhammerSchulzSchmiedeletal.2019, author = {Auerhammer, Nina and Schulz, Alexander and Schmiedel, Alexander and Holzapfel, Marco and Hoche, Joscha and R{\"o}hr, Merle I. S. and Mitric, Roland and Lambert, Christoph}, title = {Dynamic exciton localisation in a pyrene-BODIPY-pyrene dye conjugate}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198718}, year = {2019}, abstract = {The photophysics of a molecular triad consisting of a BODIPY dye and two pyrene chromophores attached in 2-position are investigated by steady state and fs-time resolved transient absorption spectroscopy as well as by field induced surface hopping (FISH) simulations. While the steady state measurements indicate moderate chromophore interactions within the triad, the time resolved measurements show upon pyrene excitation a delocalised excited state which localises onto the BODIPY chromophore with a time constant of 0.12 ps. This could either be interpreted as an internal conversion process within the excitonically coupled chromophores or as an energy transfer from the pyrenes to the BODIPY dye. The analysis of FISH-trajectories reveals an oscillatory behaviour where the excitation hops between the pyrene units and the BODIPY dye several times until finally they become localised on the BODIPY chromophore within 100 fs. This is accompanied by an ultrafast nonradiative relaxation within the excitonic manifold mediated by the nonadiabatic coupling. Averaging over an ensemble of trajectories allowed us to simulate the electronic state population dynamics and determine the time constants for the nonradiative transitions that mediate the ultrafast energy transfer and exciton localisation on BODIPY.}, language = {en} } @unpublished{HuberPresWittmannetal.2019, author = {Huber, Bernhard and Pres, Sebastian and Wittmann, Emanuel and Dietrich, Lysanne and L{\"u}ttig, Julian and Fersch, Daniel and Krauss, Enno and Friedrich, Daniel and Kern, Johannes and Lisinetskii, Victor and Hensen, Matthias and Hecht, Bert and Bratschitsch, Rudolf and Riedle, Eberhard and Brixner, Tobias}, title = {Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate}, issn = {0034-6748}, doi = {10.1063/1.5115322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191906}, year = {2019}, abstract = {We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale ("2D nanoscopy"). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump-probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM.}, language = {en} } @unpublished{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178482}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} }