@article{MontellanoKluterRueckeretal.2022, author = {Montellano, Felipe A. and Kluter, Elisabeth J. and R{\"u}cker, Viktoria and Ungeth{\"u}m, Kathrin and Mackenrodt, Daniel and Wiedmann, Silke and Dege, Tassilo and Quilitzsch, Anika and Morbach, Caroline and Frantz, Stefan and St{\"o}rk, Stefan and Haeusler, Karl Georg and Kleinschnitz, Christoph and Heuschmann, Peter U.}, title = {Cardiac dysfunction and high-sensitive C-reactive protein are associated with troponin T elevation in ischemic stroke: insights from the SICFAIL study}, series = {BMC Neurology}, volume = {22}, journal = {BMC Neurology}, number = {1}, doi = {10.1186/s12883-022-03017-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300119}, year = {2022}, abstract = {Background Troponin elevation is common in ischemic stroke (IS) patients. The pathomechanisms involved are incompletely understood and comprise coronary and non-coronary causes, e.g. autonomic dysfunction. We investigated determinants of troponin elevation in acute IS patients including markers of autonomic dysfunction, assessed by heart rate variability (HRV) time domain variables. Methods Data were collected within the Stroke Induced Cardiac FAILure (SICFAIL) cohort study. IS patients admitted to the Department of Neurology, W{\"u}rzburg University Hospital, underwent baseline investigation including cardiac history, physical examination, echocardiography, and blood sampling. Four HRV time domain variables were calculated in patients undergoing electrocardiographic Holter monitoring. Multivariable logistic regression with corresponding odds ratios (OR) and 95\% confidence intervals (CI) was used to investigate the determinants of high-sensitive troponin T (hs-TnT) levels ≥14 ng/L. Results We report results from 543 IS patients recruited between 01/2014-02/2017. Of those, 203 (37\%) had hs-TnT ≥14 ng/L, which was independently associated with older age (OR per year 1.05; 95\% CI 1.02-1.08), male sex (OR 2.65; 95\% CI 1.54-4.58), decreasing estimated glomerular filtration rate (OR per 10 mL/min/1.73 m2 0.71; 95\% CI 0.61-0.84), systolic dysfunction (OR 2.79; 95\% CI 1.22-6.37), diastolic dysfunction (OR 2.29; 95\% CI 1.29-4.02), atrial fibrillation (OR 2.30; 95\% CI 1.25-4.23), and increasing levels of C-reactive protein (OR 1.48 per log unit; 95\% CI 1.22-1.79). We did not identify an independent association of troponin elevation with the investigated HRV variables. Conclusion Cardiac dysfunction and elevated C-reactive protein, but not a reduced HRV as surrogate of autonomic dysfunction, were associated with increased hs-TnT levels in IS patients independent of established cardiovascular risk factors.}, language = {en} } @article{HoppAlbertWeissenbergerMencletal.2016, author = {Hopp, Sarah and Albert-Weissenberger, Christiane and Mencl, Stine and Bieber, Michael and Schuhmann, Michael K. and Stetter, Christian and Nieswandt, Bernhard and Schmidt, Peter M. and Monoranu, Camelia-Maria and Alafuzoff, Irina and Marklund, Niklas and Nolte, Marc W. and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {Targeting coagulation factor XII as a novel therapeutic option in brain trauma}, series = {Annals of Neurology}, volume = {79}, journal = {Annals of Neurology}, number = {6}, doi = {10.1002/ana.24655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188800}, pages = {970-982}, year = {2016}, abstract = {Objective: Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. Methods: We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. Results: Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. Interpretation: The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies.}, language = {en} } @article{KleinschnitzGoebelMeuthetal.2014, author = {Kleinschnitz, Christoph and G{\"o}bel, Kerstin and Meuth, Sven G. and Kraft, Peter}, title = {Glatiramer acetate does not protect from acute ischemic stroke in mice}, doi = {10.1186/2040-7378-6-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110528}, year = {2014}, abstract = {Background The role of the immune system in the pathophysiology of acute ischemic stroke is increasingly recognized. However, targeted treatment strategies to modulate immunological pathways in stroke are still lacking. Glatiramer acetate is a multifaceted immunomodulator approved for the treatment of relapsing-remitting multiple sclerosis. Experimental studies suggest that glatiramer acetate might also work in other neuroinflammatory or neurodegenerative diseases apart from multiple sclerosis. Findings We evaluated the efficacy of glatiramer acetate in a mouse model of brain ischemia/reperfusion injury. 60 min of transient middle cerebral artery occlusion was induced in male C57Bl/6 mice. Pretreatment with glatiramer acetate (3.5 mg/kg bodyweight) 30 min before the induction of stroke did not reduce lesion volumes or improve functional outcome on day 1. Conclusions Glatiramer acetate failed to protect from acute ischemic stroke in our hands. Further studies are needed to assess the true therapeutic potential of glatiramer acetate and related immunomodulators in brain ischemia.}, language = {en} }