@article{WagnerCrippaAmariccietal.2023, author = {Wagner, N. and Crippa, L. and Amaricci, A. and Hansmann, P. and Klett, M. and K{\"o}nig, E. J. and Sch{\"a}fer, T. and Di Sante, D. and Cano, J. and Millis, A. J. and Georges, A. and Sangiovanni, G.}, title = {Mott insulators with boundary zeros}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42773-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358150}, year = {2023}, abstract = {The topological classification of electronic band structures is based on symmetry properties of Bloch eigenstates of single-particle Hamiltonians. In parallel, topological field theory has opened the doors to the formulation and characterization of non-trivial phases of matter driven by strong electron-electron interaction. Even though important examples of topological Mott insulators have been constructed, the relevance of the underlying non-interacting band topology to the physics of the Mott phase has remained unexplored. Here, we show that the momentum structure of the Green's function zeros defining the "Luttinger surface" provides a topological characterization of the Mott phase related, in the simplest description, to the one of the single-particle electronic dispersion. Considerations on the zeros lead to the prediction of new phenomena: a topological Mott insulator with an inverted gap for the bulk zeros must possess gapless zeros at the boundary, which behave as a form of "topological antimatter" annihilating conventional edge states. Placing band and Mott topological insulators in contact produces distinctive observable signatures at the interface, revealing the otherwise spectroscopically elusive Green's function zeros.}, language = {en} } @article{HansmannParraghToschietal.2014, author = {Hansmann, P. and Parragh, N. and Toschi, A. and Sangiovanni, G. and Held, K.}, title = {Importance of d-p Coulomb interaction for high T-C cuprates and other oxides}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {33009}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/3/033009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117165}, year = {2014}, abstract = {Current theoretical studies of electronic correlations in transition metal oxides typically only account for the local repulsion between d-electrons even if oxygen ligand p-states are an explicit part of the effective Hamiltonian. Interatomic interactions such as U-pd between d- and (ligand) p-electrons, as well as the local interaction between p-electrons, are neglected. Often, the relative d-p orbital splitting has to be adjusted 'ad hoc' on the basis of the experimental evidence. By applying the merger of local density approximation and dynamical mean field theory to the prototypical case of the three-band Emery dp model for the cuprates, we demonstrate that, without any 'ad hoc' adjustment of the orbital splitting, the charge transfer insulating state is stabilized by the interatomic interaction U-pd. Our study hence shows how to improve realistic material calculations that explicitly include the p-orbitals.}, language = {en} }