@article{GarciaMartinezBrunkAvalosetal.2015, author = {Garc{\´i}a-Mart{\´i}nez, Jorge and Brunk, Michael and Avalos, Javier and Terpitz, Ulrich}, title = {The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {7798}, doi = {10.1038/srep07798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149049}, year = {2015}, abstract = {Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.}, language = {en} } @article{DandekarFieselmannFischeretal.2015, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149029}, year = {2015}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} } @article{EhmannSauerKittel2015, author = {Ehmann, Nadine and Sauer, Markus and Kittel, Robert J.}, title = {Super-resolution microscopy of the synaptic active zone}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {7}, doi = {10.3389/fncel.2015.00007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148997}, year = {2015}, abstract = {Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins}, language = {en} } @article{PaulPauliEhmannetal.2015, author = {Paul, Mila M. and Pauli, Martin and Ehmann, Nadine and Hallermann, Stefan and Sauer, Markus and Kittel, Robert J. and Heckmann, Manfred}, title = {Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {29}, doi = {10.3389/fncel.2015.00029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148988}, year = {2015}, abstract = {The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp\(^{69}\)). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp\(^{69}\) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt\(^{KD}\)) in wildtype (wt), brp\(^{69}\) and rab3 null mutants (rab3\(^{rup}\)), where Brp is concentrated at a small number of AZs. At wt and rab3\(^{rup}\) synapses, syt\(^{KD}\) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt\(^{KD}\) did not alter EPSC amplitude at brp\(^{69}\) synapses, but shortened delay and rise time. In fact, following syt\(^{KD}\), these kinetic properties were strikingly similar in wt and brp\(^{69}\), which supports the notion that Syt protracts release at brp\(^{69}\) synapses. To gain insight into this surprising role of Syt at brp\(^{69}\) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At tonic type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt\(^{KD}\). Notably, syt\(^{KD}\) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt\(^{KD}\) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt.}, language = {en} } @article{KraftDrechslerGunrebenetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Gunreben, Ignaz and Heuschmann, Peter Ulrich and Kleinschnitz, Christoph}, title = {Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0119810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148806}, pages = {e0119810}, year = {2015}, abstract = {Background Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation. Aims To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression. Methods This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters. Results GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers. Conclusions Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk.}, language = {en} } @article{BuechnerMaitiDrohatetal.2015, author = {Buechner, Claudia N. and Maiti, Atanu and Drohat, Alexander C. and Tessmer, Ingrid}, title = {Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging}, series = {Nucleic Acids Research}, volume = {43}, journal = {Nucleic Acids Research}, number = {5}, doi = {10.1093/nar/gkv139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148795}, pages = {2716-2729}, year = {2015}, abstract = {The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use singlemolecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.}, language = {en} } @article{VoglLutzSchoenfelderetal.2015, author = {Vogl, Silvia and Lutz, Roman W. and Sch{\"o}nfelder, Gilbert and Lutz, Werner K.}, title = {CYP2C9 genotype vs. metabolic phenotype for individual drug dosing - a correlation analysis using flurbiprofen as probe drug}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0120403}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148783}, pages = {e0120403}, year = {2015}, abstract = {Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 \% of wild type), and 0.113 for CYP2C9*3 (19 \% of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 \% for genotype *1/*1, an average reduction to 84 \%, 60 \%, 68 \%, 43 \%, and 19\% would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation >= 20\% and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 \%, one in 20 would be 40\% off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.}, language = {en} } @article{WalzWegmannDechetal.2015, author = {Walz, Yvonne and Wegmann, Martin and Dech, Stefan and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook}, series = {Parasites \& Vectors}, volume = {8}, journal = {Parasites \& Vectors}, number = {163}, doi = {10.1186/s13071-015-0732-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148778}, year = {2015}, abstract = {Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Augustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioural Neuroscience}, volume = {9}, journal = {Frontiers in Behavioural Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148763}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} } @article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} } @article{PhillipsChanPaeschkeetal.2015, author = {Phillips, Jane A. and Chan, Angela and Paeschke, Katrin and Zakian, Virginia A.}, title = {The Pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148722}, pages = {e1005186}, year = {2015}, abstract = {Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.}, language = {en} } @article{LeikamHufnagelOttoetal.2015, author = {Leikam, C and Hufnagel, AL and Otto, C and Murphy, DJ and M{\"u}hling, B and Kneitz, S and Nanda, I and Schmid, M and Wagner, TU and Haferkamp, S and Br{\"o}cker, E-B and Schartl, M and Meierjohann, S}, title = {In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells}, series = {Cell Death and Disease}, volume = {6}, journal = {Cell Death and Disease}, number = {e1711}, doi = {10.1038/cddis.2015.71}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148718}, year = {2015}, abstract = {Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi-or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS\(^{61K}\) in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental in vitro evidence for the evasion of OIS on the cellular level and ensuing transformation.}, language = {en} } @article{HausmannBrandtKoecheletal.2015, author = {Hausmann, Stefan and Brandt, Evelyn and K{\"o}chel, Carolin and Einsele, Hermann and Bargou, Ralf C. and Seggewiss-Bernhardt, Ruth and St{\"u}hmer, Thorsten}, title = {Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0122689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148708}, pages = {e0122689}, year = {2015}, abstract = {Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells-either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM. 1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110\(\alpha\), or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma.}, language = {en} } @article{EberleinPeperFernandezetal.2015, author = {Eberlein, Uta and Peper, Michel and Fern{\´a}ndez, Maria and Lassmann, Michael and Scherthan, Harry}, title = {Calibration of the \(\gamma\)-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0123174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148697}, pages = {e0123174}, year = {2015}, abstract = {DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers \(\gamma\)-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing \(\gamma\)-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing \(\gamma\)-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra-and inter-subject deviations.}, language = {en} } @article{LueckerathLapaAlbertetal.2015, author = {L{\"u}ckerath, Katharina and Lapa, Constantin and Albert, Christa and Herrmann, Ken and J{\"o}rg, Gerhard and Samnick, Samuel and Einsele, Herrmann and Knop, Stefan and Buck, Andreas K.}, title = {\(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {10}, doi = {10.18632/oncotarget.3053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148688}, pages = {8418-8429}, year = {2015}, abstract = {Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79\% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future.}, language = {en} } @article{SauerWiessnerSchoelletal.2015, author = {Sauer, C and Wießner, M and Sch{\"o}ll, A and Reinert, F}, title = {Observation of a molecule-metal interface charge transfer related feature by resonant photoelectron spectroscopy}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, number = {043016}, doi = {10.1088/1367-2630/17/4/043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148672}, year = {2015}, abstract = {We report the discovery of a charge transfer (CT) related low binding energy feature at a molecule-metal interface by the application of resonant photoelectron spectroscopy (RPES). This interface feature is neither present for molecular bulk samples nor for the clean substrate. A detailed analysis of the spectroscopic signature of the low binding energy feature shows characteristics of electronic interaction not found in other electron spectroscopic techniques. Within a cluster model description this feature is assigned to a particular eigenstate of the photoionized system that is invisible in direct photoelectron spectroscopy but revealed in RPES through a relative resonant enhancement. Interpretations based on considering only the predominant character of the eigenstates explain the low binding energy feature by an occupied lowest unoccupied molecular orbital, which is either realized through CT in the ground or in the intermediate state. This reveals that molecule-metal CT is responsible for this feature. Consequently, our study demonstrates the sensitivity of RPES to electronic interactions and constitutes a new way to investigate CT at molecule-metal interfaces.}, language = {en} } @article{GoerlZhangStepanenkoetal.2015, author = {G{\"o}rl, Daniel and Zhang, Xin and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7009}, doi = {10.1038/ncomms8009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148657}, year = {2015}, abstract = {New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (A\(_{m}\)BB)\(_{n}\). The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating.}, language = {en} } @article{RutkowskiErhardL'Hernaultetal.2015, author = {Rutkowski, Andrzej J. and Erhard, Florian and L'Hernault, Anne and Bonfert, Thomas and Schilhabel, Markus and Crump, Colin and Rosenstiel, Philip and Efstathiou, Stacey and Zimmer, Ralf and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {Widespread disruption of host transcription termination in HSV-1 infection}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7126}, doi = {10.1038/ncomms8126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148643}, year = {2015}, abstract = {Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination.}, language = {en} } @article{GeffersGrollGbureck2015, author = {Geffers, Martha and Groll, J{\"u}rgen and Gbureck, Uwe}, title = {Reinforcement strategies for load-bearing calcium phosphate biocements}, series = {Materials}, volume = {8}, journal = {Materials}, doi = {10.3390/ma8052700}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148636}, pages = {2700-2717}, year = {2015}, abstract = {Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement-hydrogel composites with largely unaffected application properties.}, language = {en} } @article{ScholzGehringGuanetal.2015, author = {Scholz, Nicole and Gehring, Jennifer and Guan, Chonglin and Ljaschenko, Dmitrij and Fischer, Robin and Lakshmanan, Vetrivel and Kittel, Robert J. and Langenhan, Tobias}, title = {The adhesion GPCR Latrophilin/CIRL shapes mechanosensation}, series = {Cell Reports}, volume = {11}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.04.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148626}, pages = {866-874}, year = {2015}, abstract = {G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily.}, language = {en} } @article{AndreattaPauli2015, author = {Andreatta, Marta and Pauli, Paul}, title = {Appetitive vs. aversive conditioning in humans}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {128}, doi = {10.3389/fnbeh.2015.00128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148614}, year = {2015}, abstract = {In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning.}, language = {en} } @article{LiYanThomaleetal.2015, author = {Li, Gang and Yan, Binghai and Thomale, Ronny and Hanke, Werner}, title = {Topological nature and the multiple Dirac cones hidden in Bismuth high-Tc superconductors}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {10435}, doi = {10.1038/srep10435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148569}, year = {2015}, abstract = {Recent theoretical studies employing density-functional theory have predicted BaBiO\(_{3}\) (when doped with electrons) and YBiO\(_{3}\) to become a topological insulator (TI) with a large topological gap (~0.7 eV). This, together with the natural stability against surface oxidation, makes the Bismuth-Oxide family of special interest for possible applications in quantum information and spintronics. The central question, we study here, is whether the hole-doped Bismuth Oxides, i.e. Ba\(_{1-X}\)K\(_{X}\)BiO\(_{3}\) and BaPb\(_{1-X}\)Bi\(_{X}\)O\(_{3}\), which are "high-Tc" bulk superconducting near 30 K, additionally display in the further vicinity of their Fermi energy E\(_{F}\) a topological gap with a Dirac-type of topological surface state. Our electronic structure calculations predict the K-doped family to emerge as a TI, with a topological gap above E\(_{F}\). Thus, these compounds can become superconductors with hole-doping and potential TIs with additional electron doping. Furthermore, we predict the Bismuth-Oxide family to contain an additional Dirac cone below E\(_{F}\) for further hole doping, which manifests these systems to be candidates for both electron-and hole-doped topological insulators.}, language = {en} } @article{SchneiderSchneiderKrieteretal.2015, author = {Schneider, Andreas and Schneider, Markus P. and Krieter, Detlef H. and Genser, Bernd and Scharnagl, Hubert and Stojakovic, Tatjana and Wanner, Christoph and Drechsler, Christiane}, title = {Effect of high-flux dialysis on circulating FGF-23 levels in end-stage renal disease patients: results from a randomized trial}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0128079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148559}, pages = {e0128079}, year = {2015}, abstract = {Background In patients undergoing maintenance hemodialysis (HD), increased levels of circulating fibroblast growth factor-23 (FGF-23) are independently associated with cardiovascular events and mortality. Interventional strategies aiming to reduce levels of FGF-23 in HD patients are of particular interest. The purpose of the current study was to compare the impact of high-flux versus low-flux HD on circulating FGF-23 levels. Methods We conducted a post-hoc analysis of the MINOXIS study, including 127 dialysis patients randomized to low-flux (n = 62) and high-flux (n = 65) HD for 52 weeks. Patients with valid measures for FGF-23 investigated baseline and after 52 weeks were included. Results Compared to baseline, a significant increase in FGF-23 levels after one year of low-flux HD was observed (Delta plasma FGF-23: +4026 RU/ml; p < 0.001). In contrast, FGF-23 levels remained stable in the high flux group (Delta plasma FGF-23: +373 RU/ml, p = 0.70). The adjusted difference of the absolute change in FGF-23 levels between the two treatment groups was statistically significant (p < 0.01). Conclusions Over a period of 12 months, high-flux HD was associated with stable FGF-23 levels, whereas the low-flux HD group showed an increase of FGF-23. However, the implications of the different FGF 23 time-trends in patients on high flux dialysis, as compared to the control group, remain to be explored in specifically designed clinical trials.}, language = {en} } @article{ShityakovPuskasPapaietal.2015, author = {Shityakov, Sergey and Pusk{\´a}s, Istv{\´a}n and P{\´a}pai, Katalin and Salvador, Ellaine and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens-Albert}, title = {Sevoflurane-sulfobutylether-\(\beta\)-cyclodextrin complex: preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200610264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148543}, pages = {10264-10279}, year = {2015}, abstract = {The objective of the present investigation was to study the ability of sulfobutylether-\(\beta\)-cyclodextrin (SBECD) to form an inclusion complex with sevoflurane (SEV), a volatile anesthetic with poor water solubility. The inclusion complex was prepared, characterized and its cellular toxicity and blood-brain barrier (BBB) permeation potential of the formulated SEV have also been examined for the purpose of controlled drug delivery. The SEV-SBE\(\beta\)CD complex was nontoxic to the primary brain microvascular endothelial (pEND) cells at a clinically relevant concentration of sevoflurane. The inclusion complex exhibited significantly higher BBB permeation profiles as compared with the reference substance (propranolol) concerning calculated apparent permeability values (P\(_{app}\)). In addition, SEV binding affinity to SBE\(\beta\)CD was confirmed by a minimal Gibbs free energy of binding (ΔG\(_{bind}\)) value of -1.727 ± 0.042 kcal・mol\(^{-1}\) and an average binding constant (K\(_{b}\)) of 53.66 ± 9.24 mM indicating rapid drug liberation from the cyclodextrin amphiphilic cavity.}, language = {en} } @article{BoehmeRitterTefikowetal.2015, author = {Boehme, Stephanie and Ritter, Viktoria and Tefikow, Susan and Stangier, Ulrich and Strauss, Bernhard and Miltner, Wolfgang H. R. and Straube, Thomas}, title = {Neural correlates of emotional interference in social anxiety disorder}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0128608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148534}, pages = {e0128608}, year = {2015}, abstract = {Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD); however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI). Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (ACC), and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients' interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD.}, language = {en} } @article{KaethnerKueblerHalder2015, author = {K{\"a}thner, Ivo and K{\"u}bler, Andrea and Halder, Sebastian}, title = {Rapid P300 brain-computer interface communication with a head-mounted display}, series = {Frontiers in Neuroscience}, volume = {9}, journal = {Frontiers in Neuroscience}, number = {207}, doi = {10.3389/fnins.2015.00207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148520}, year = {2015}, abstract = {Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 x 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 x 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94\% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96\% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100\% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100\% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely paralyzed persons.}, language = {en} } @article{KarlDandekar2015, author = {Karl, Stefan and Dandekar, Thomas}, title = {Convergence behaviour and control in non-linear biological networks}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {09746}, doi = {10.1038/srep09746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148510}, year = {2015}, abstract = {Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected.}, language = {en} } @article{FuchsStenderTrupkeetal.2015, author = {Fuchs, F. and Stender, B. and Trupke, M. and Simin, D. and Pflaum, J. and Dyakonov, V. and Astakhov, G.V.}, title = {Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7578}, doi = {10.1038/ncomms8578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148502}, year = {2015}, abstract = {Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.}, language = {en} } @article{EbertBenischKrugetal.2015, author = {Ebert, Regina and Benisch, Peggy and Krug, Melanie and Zeck, Sabine and Meißner-Weigl, Jutta and Steinert, Andre and Rauner, Martina and Hofbauer, Lorenz and Jakob, Franz}, title = {Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells}, series = {Stem Cell Research}, volume = {15}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2015.06.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148491}, pages = {231-239}, year = {2015}, abstract = {The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation andmineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1\(\beta\), CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.}, language = {en} } @article{KleinschnitzNiemczykRehbergWeberetal.2015, author = {Kleinschnitz, Christoph and Niemczyk, Gabriele and Rehberg-Weber, Karin and Wernsd{\"o}rfer, Colin}, title = {Interferon Beta-1a (AVONEX®) as a treatment option for untreated patients with multiple sclerosis (AXIOM): a prospective, observational study}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160715271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148487}, pages = {15271-15286}, year = {2015}, abstract = {The efficacy and safety of first-line disease-modifying therapies (DMT) for relapsing-remitting multiple sclerosis (RRMS) has been demonstrated in pivotal, randomized trials, but these studies do not reflect the routine care setting where treatment gaps or switches are common. The Avonex as Treatment Option for Untreated MS Patients (AXIOM) trial assessed the efficacy of newly-initiated intramuscular interferon beta-1a (IM IFNb-1a) after a treatment-free interval, with particular consideration of the previous course of disease and therapy. The AXIOM trial was an open, 12-month, observational, non-interventional study with a retrospective and a prospective part conducted in Germany. RRMS patients with a treatment-free interval of at least three months were included and treated with IFNb-1a for up to 12 months. Relapse rate, disability progression, injection-related parameters and quality of life observed during the prospective part were compared with retrospectively-collected data. Two hundred and thirty five RRMS patients participated in AXIOM. The mean relapse rate decreased from 1.1 in the three months before baseline to 0.2 per quarter during the twelve-month observational period; the Multiple Sclerosis Functional Composite score improved during twelve months of IM IFNb-1a treatment, while the Expanded Disability Status Scale score did not change over the course of this study. Compared to previous DMTs (IM IFNb-1a, subcutaneous IFNb-1a (SC IFNb-1a), SC IFNb-1b, glatiramer acetate), the patients experienced less injection site reactions and flu-like symptoms, with a stated improved quality of life. IM IFNb-1a was effective and well accepted in RRMS patients with no or discontinued previous therapy. These results from the routine care setting may inform optimization of DMT treatment in RRMS, but need confirmation in further studies.}, language = {en} } @article{KolbMaeurerGoebelerMaeurer2015, author = {Kolb-M{\"a}urer, Annette and Goebeler, Matthias and M{\"a}urer, Mathias}, title = {Cutaneous adverse events associated with interferon-\(\beta\) treatment of multiple sclerosis}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160714951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148451}, pages = {14951-14960}, year = {2015}, abstract = {Interferons are widely used platform therapies as disease-modifying treatment of patients with multiple sclerosis. Although interferons are usually safe and well tolerated, they frequently cause dermatological side effects. Here, we present a multiple sclerosis (MS) patient treated with interferon-\(\beta\) who developed new-onset psoriasis. Both her MS as well as her psoriasis finally responded to treatment with fumarates. This case illustrates that interferons not only cause local but also systemic adverse events of the skin. These systemic side effects might indicate that the Th17/IL-17 axis plays a prominent role in the immunopathogenesis of this individual case and that the autoimmune process might be deteriorated by further administration of interferons. In conclusion, we think that neurologists should be aware of systemic cutaneous side effects and have a closer look on interferon-associated skin lesions. Detection of psoriasiform lesions might indicate that interferons are probably not beneficial in the individual situation. We suggest that skin lesions may serve as biomarkers to allocate MS patients to adequate disease-modifying drugs.}, language = {en} } @article{RottlaenderKuerten2015, author = {Rottlaender, Andrea and Kuerten, Stefanie}, title = {Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160714850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148416}, pages = {14850-14865}, year = {2015}, abstract = {Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities.}, language = {en} } @article{MatthesSchoenfeldZottnicketal.2015, author = {Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Zottnick, Sven H. and M{\"u}ller-Buschbaum, Klaus}, title = {Post-synthetic shaping of porosity and crystal structure of Ln-Bipy-MOFs by thermal treatment}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200712125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148404}, pages = {12125-12153}, year = {2015}, abstract = {The reaction of anhydrous lanthanide chlorides together with 4,4'-bipyridine yields the MOFs \(^{2}\)\(_{∞}\)[Ln\(_{2}\)Cl\(_{6}\)(bipy)\(_{3}\)]*2bipy, with Ln = Pr-Yb, bipy = 4,4'-bipyridine, and \(^{3}\)\(_{∞}\)[La\(_{2}\)Cl\(_{6}\)(bipy)\(_{5}\)]*4bipy. Post-synthetic thermal treatment in combination with different vacuum conditions was successfully used to shape the porosity of the MOFs. In addition to the MOFs microporosity, a tuneable mesoporosity can be implemented depending on the treatment conditions as a surface morphological modification. Furthermore, thermal treatment without vacuum results in several identifiable crystalline high-temperature phases. Instead of collapse of the frameworks upon heating, further aggregation under release of bipy is observed. \(^{3}\)\(_{∞}\)[LaCl\(_{3}\)(bipy)] and \(^{2}\)\(_{∞}\)[Ln\(_{3}\)Cl\(_{9}\)(bipy)\(_{3}\)], with Ln = La, Pr, Sm, and \(^{1}\)\(_{∞}\)[Ho\(_{2}\)Cl\(_{6}\)(bipy)\(_{2}\)] were identified and characterized, which can also exhibit luminescence. Besides being released upon heating, the linker 4,4'-bipyridine can undergo activation of C-C bonding in ortho-position leading to the in-situ formation of 4,4':2',2 '':4 '',4'''-quaterpyridine (qtpy). qtpy can thereby function as linker itself, as shown for the formation of the network \(^{2}\)\(_{∞}\)[Gd\(_{2}\)Cl\(_{6}\)(qtpy)\(_{2}\)(bipy)\(_{2}\)]*bipy. Altogether, the manuscript elaborates the influence of thermal treatment beyond the usual activation procedures reported for MOFs.}, language = {en} } @article{MartinReinekingSeoetal.2015, author = {Martin, Emily A. and Reineking, Bj{\"o}rn and Seo, Bumsuk and Steffan-Dewenter, Ingolf}, title = {Pest control of aphids depends on landscape complexity and natural enemy interactions}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1095}, doi = {10.7717/peerj.1095}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148393}, year = {2015}, abstract = {Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.}, language = {en} } @article{JoschinskiHovestadtKrauss2015, author = {Joschinski, Jens and Hovestadt, Thomas and Krauss, Jochen}, title = {Coping with shorter days: do phenology shifts constrain aphid fitness?}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1103}, doi = {10.7717/peerj.1103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148382}, year = {2015}, abstract = {Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.}, language = {en} } @article{VaragnoloLinObieretal.2015, author = {Varagnolo, Linda and Lin, Quiong and Obier, Nadine and Plass, Christoph and Dietl, Johannes and Zenke, Martin and Claus, Rainer and M{\"u}ller, Albrecht M.}, title = {PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {12319}, doi = {10.1038/srep12319}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148374}, year = {2015}, abstract = {Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different HK4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.}, language = {en} } @article{KleintWittchenLueken2015, author = {Kleint, Nina I. and Wittchen, Hans-Ulrich and Lueken, Ulrike}, title = {Probing the interoceptive network by listening to heartbeats: an fMRI study}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0133164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148330}, pages = {e0133164}, year = {2015}, abstract = {Exposure to cues of homeostatic relevance (i.e. heartbeats) is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI) study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance) and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region) and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.}, language = {en} } @article{SherifHeroldVoelkeretal.2015, author = {Sherif, Mohammad A. and Herold, Joerg and Voelker, Wolfram and Maniuc, Octavian and Ertl, Georg and Praast, Christian and Braun-Dullaeus, Ruediger Christian}, title = {Feasibility of a new method using two-dimensional transesophageal echocardiography for aortic annular sizing in patients undergoing transcatheter aortic valve implantation; a case-control study}, series = {BMC Cardiovascular Disorders}, volume = {15}, journal = {BMC Cardiovascular Disorders}, number = {78}, doi = {10.1186/s12872-015-0072-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148328}, year = {2015}, abstract = {Background: Accurate preoperative assessment of the aortic annulus dimension is crucial for successful transcatheter aortic valve implantation (TAVI). In this study we validated a new method using two-dimensional transesophageal echocardiography (2D-TEE) for measurement of the aortic annulus prior to TAVI. Methods: We analysed 124 patients who underwent successful TAVI using a self-expandable prosthesis, divided equally into two groups; in the study group we used the cross sectional short axis 2D-TEE for measurement of the aortic annulus and in the control group we used the long axis 2D-TEE. Results: Both groups were comparable regarding the clinical parameters. On the other hand, patients in the study group had less left ventricular ejection fraction (38.9 \% versus 45.6 \%, p = 0.01). The aortic valve annulus was, although not statistically significant, smaller in the study group (21.58 versus 23.28 mm, p = 0.25). Post procedural quantification of the aortic regurgitation revealed that only one patient in both groups had severe aortic regurgitation (AR), in this patient the valve was implanted deep. The incidence of significant AR was higher in the control group (29.0 \% versus 12.9 \%, p = 0.027). Conclusions: Sizing of the aortic valve annulus using cross-sectional 2D-TEE offers a safe and plausible method for patients undergoing TAVI using the self-expandable prosthesis and is significantly superior to using long axis 2D-TEE.}, language = {en} } @article{KollertDombertDoeringetal.2015, author = {Kollert, Sina and Dombert, Benjamin and D{\"o}ring, Frank and Wischmeyer, Erhard}, title = {Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {12548}, doi = {10.1038/srep12548}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148312}, year = {2015}, abstract = {In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IK\(_{SO}\). A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K\(^{+}\) currents upon LPA application. In DRG neurons nociception can result from TRPV\(_{1}\) activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV\(_{1}\) and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IK\(_{SO}\) after application of LPA whereas under these conditions IK\(_{SO}\) in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.}, language = {en} } @article{KoziolRadioSmircichetal.2015, author = {Koziol, Uriel and Radio, Santiago and Smircich, Pablo and Zarowiecki, Magdalena and Fern{\´a}ndez, Cecilia and Brehm, Klaus}, title = {A novel terminal-repeat retrotransposon in miniature (TRIM) is massively expressed in Echinococcus multilocularis stem cells}, series = {Genome Biology and Evolution}, volume = {7}, journal = {Genome Biology and Evolution}, number = {8}, doi = {10.1093/gbe/evv126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148306}, pages = {2136-2153}, year = {2015}, abstract = {Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes.}, language = {en} } @article{HaarmannNehenDeissetal.2015, author = {Haarmann, Axel and Nehen, Mathias and Deiß, Annika and Buttmann, Mathias}, title = {Fumaric acid esters do not reduce inflammatory NF-\(\kappa\)B/p65 nuclear translocation, ICAM-1 expression and T-cell adhesiveness of human brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160819086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148295}, pages = {19086-19095}, year = {2015}, abstract = {Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 \(\mu\)M blocked the IL-1\(\beta\)-induced nuclear translocation of NF-\(\kappa\)B/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1\(\beta\)-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1\(\beta\)-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.}, language = {en} } @article{UmHinrichsenKwonetal.2015, author = {Um, Jaegon and Hinrichsen, Haye and Kwon, Chulan and Park, Hyunggyu}, title = {Total cost of operating an information engine}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, number = {085001}, doi = {10.1088/1367-2630/17/8/085001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148286}, year = {2015}, abstract = {We study a two-level system controlled in a discrete feedback loop, modeling both the system and the controller in terms of stochastic Markov processes. We find that the extracted work, which is known to be bounded from above by the mutual information acquired during measurement, has to be compensated by an additional energy supply during the measurement process itself, which is bounded by the same mutual information from below. Our results confirm that the total cost of operating an information engine is in full agreement with the conventional second law of thermodynamics. We also consider the efficiency of the information engine as a function of the cycle time and discuss the operating condition for maximal power generation. Moreover, we find that the entropy production of our information engine is maximal for maximal efficiency, in sharp contrast to conventional reversible heat engines.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{NeuhausSchlundtFehrholzetal.2015, author = {Neuhaus, Winfried and Schlundt, Marian and Fehrholz, Markus and Ehrke, Alexander and Kunzmann, Steffen and Liebner, Stefan and Speer, Christian P. and F{\"o}rster, Carola Y.}, title = {Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0136221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148268}, pages = {e0136221}, year = {2015}, abstract = {Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.}, language = {en} } @article{SalvadorBurekFoerster2015, author = {Salvador, Ellaine and Burek, Malgorzata and F{\"o}rster, Carola Y.}, title = {Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {323}, doi = {10.3389/fncel.2015.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148255}, year = {2015}, abstract = {The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.}, language = {en} } @article{GaoNagpalSchneideretal.2015, author = {Gao, Shiqiang and Nagpal, Jatin and Schneider, Martin W. and Kozjak-Pavlovic, Vera and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8046}, doi = {10.1038/ncomms9046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148197}, year = {2015}, abstract = {Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ~17 cGMPs\(^{-1}\)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O\(_2\)/CO\(_2\) sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.}, language = {en} } @article{ElsterPlattThomaleetal.2015, author = {Elster, Lars and Platt, Christian and Thomale, Ronny and Hanke, Werner and Hankiewicz, Ewelina M.}, title = {Accessing topological superconductivity via a combined STM and renormalization group analysis}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8232}, doi = {10.1038/ncomms9232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148181}, year = {2015}, abstract = {The search for topological superconductors has recently become a key issue in condensed matter physics, because of their possible relevance to provide a platform for Majorana bound states, non-Abelian statistics, and quantum computing. Here we propose a new scheme which links as directly as possible the experimental search to a material-based microscopic theory for topological superconductivity. For this, the analysis of scanning tunnelling microscopy, which typically uses a phenomenological ansatz for the superconductor gap functions, is elevated to a theory, where a multi-orbital functional renormalization group analysis allows for an unbiased microscopic determination of the material-dependent pairing potentials. The combined approach is highlighted for paradigmatic hexagonal systems, such as doped graphene and water-intercalated sodium cobaltates, where lattice symmetry and electronic correlations yield a propensity for a chiral singlet topological superconductor. We demonstrate that our microscopic material-oriented procedure is necessary to uniquely resolve a topological superconductor state.}, language = {en} } @article{RovitusoDuffySchroeteretal.2015, author = {Rovituso, Damiano M. and Duffy, Catharina E. and Schroeter, Michael and Kaiser, Claudia C. and Kleinschnitz, Christoph and Bayas, Antonios and Elsner, Rebecca and Kuerten, Stefanie}, title = {The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14265}, doi = {10.1038/srep14265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148172}, year = {2015}, abstract = {B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.}, language = {en} } @article{FirdessaGoodAmstaldenetal.2015, author = {Firdessa, Rebuma and Good, Liam and Amstalden, Maria Cecilia and Chindera, Kantaraja and Kamaruzzaman, Nor Fadhilah and Schultheis, Martina and R{\"o}ger, Bianca and Hecht, Nina and Oelschlaeger, Tobias A. and Meinel, Lorenz and L{\"u}hmann, Tessa and Moll, Heidrun}, title = {Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB)}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0004041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148162}, pages = {e0004041}, year = {2015}, abstract = {Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators.}, language = {en} } @article{SungKimFimmeletal.2015, author = {Sung, Jooyoung and Kim, Pyosang and Fimmel, Benjamin and W{\"u}rthner, Frank and Kim, Dongho}, title = {Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8646}, doi = {10.1038/ncomms9646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148157}, year = {2015}, abstract = {Ever since the discovery of dye self-assemblies in nature, there have been tremendous efforts to exploit biomimetic supramolecular assemblies for tailored artificial photon processing materials. This feature necessarily has resulted in an increasing demand for understanding exciton dynamics in the dye self-assemblies. In a sharp contrast with pi-type aggregates, however, the detailed observation of exciton dynamics in H-type aggregates has remained challenging. In this study, as we succeed in measuring transient fluorescence from Frenkel state of π-stacked perylene tetracarboxylic acid bisimide dimer and oligomer aggregates, we present an experimental demonstration on Frenkel exciton dynamics of archetypal columnar π-π stacks of dyes. The analysis of the vibronic peak ratio of the transient fluorescence spectra reveals that unlike the simple π-stacked dimer, the photoexcitation energy in the columnar π-stacked oligomer aggregates is initially delocalized over at least three molecular units and moves coherently along the chain in tens of femtoseconds, preceding excimer formation process.}, language = {en} }