@article{JarreHeyerMemmeletal.2014, author = {Jarre, Gerald and Heyer, Steffen and Memmel, Elisabeth and Meinhardt, Thomas and Krueger, Anke}, title = {Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test}, series = {Beilstein Journal of Organic Chemistry}, volume = {10}, journal = {Beilstein Journal of Organic Chemistry}, issn = {1860-5397}, doi = {10.3762/bjoc.10.288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118199}, pages = {2729-2737}, year = {2014}, abstract = {Nanodiamonds functionalized with different organic moieties carrying terminal amino groups have been synthesized. These include conjugates generated by Diels-Alder reactions of ortho-quinodimethanes formed in situ from pyrazine and 5,6-dihydrocyclobuta[d]pyrimidine derivatives. For the quantification of primary amino groups a modified photometric assay based on the Kaiser test has been developed and validated for different types of aminated nanodiamond. The results correspond well to values obtained by thermogravimetry. The method represents an alternative wet-chemical quantification method in cases where other techniques like elemental analysis fail due to unfavourable combustion behaviour of the analyte or other impediments.}, language = {en} } @article{MerzMerzKirchneretal.2021, author = {Merz, Viktor and Merz, Julia and Kirchner, Maximilian and Lenhart, Julian and Marder, Todd B. and Krueger, Anke}, title = {Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) Ions}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256803}, pages = {8118-8126}, year = {2021}, abstract = {Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na\(^{+}\), K\(^{+}\), Ca\(^{2+}\) and Mg\(^{2+}\). The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.}, language = {en} } @article{SulimanMustafaKruegeretal.2016, author = {Suliman, Salwa and Mustafa, Kamal and Krueger, Anke and Steinm{\"u}ller-Nethl, Doris and Finne-Wistrand, Anna and Osdal, Tereza and Hamza, Amani O. and Sun, Yang and Parajuli, Himalaya and Waag, Thilo and Nickel, Joachim and Johannessen, Anne Christine and McCormack, Emmet and Costea, Daniela Elena}, title = {Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes}, series = {Biomaterials}, volume = {95}, journal = {Biomaterials}, doi = {10.1016/j.biomaterials.2016.04.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188287}, pages = {11-21}, year = {2016}, abstract = {This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.}, language = {en} } @article{SulimanSunPedersenetal.2016, author = {Suliman, Salwa and Sun, Yang and Pedersen, Torbjorn O. and Xue, Ying and Nickel, Joachim and Waag, Thilo and Finne-Wistrand, Anna and Steinm{\"u}ller-Nethl, Doris and Krueger, Anke and Costea, Daniela E. and Mustafa, Kamal}, title = {In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2}, series = {Advanced Healthcare Materials}, volume = {5}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.201500723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189764}, pages = {730-742}, year = {2016}, abstract = {The aim is to evaluate the effect of modifying poly[(L-lactide)-co-(epsilon-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1 alpha 2, and ANGPT1 are signifi cantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90\% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates infl ammation while lowering the dose of BMP-2 to a relatively safe and economical level.}, language = {en} }