@phdthesis{Ehses2011, author = {Ehses, Philipp}, title = {Development of new Acquisition Strategies for fast Parameter Quantification in Magnetic Resonance Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Magnetic resonance imaging (MRI) is a medical imaging method that involves no ionizing radiation and can be used non-invasively. Another important - if not the most important - reason for the widespread and increasing use of MRI in clinical practice is its interesting and highly flexible image contrast, especially of biological tissue. The main disadvantages of MRI, compared to other widespread imaging modalities like computed tomography (CT), are long measurement times and the directly resulting high costs. In the first part of this work, a new technique for accelerated MRI parameter mapping using a radial IR TrueFISP sequence is presented. IR TrueFISP is a very fast method for the simultaneous quantification of proton density, the longitudinal relaxation time T1, and the transverse relaxation time T2. Chapter 2 presents speed improvements to the original IR TrueFISP method. Using a radial view-sharing technique, it was possible to obtain a full set of relaxometry data in under 6 s per slice. Furthermore, chapter 3 presents the investigation and correction of two major sources of error of the IR TrueFISP method, namely magnetization transfer and imperfect slice profiles. In the second part of this work, a new MRI thermometry method is presented that can be used in MRI-safety investigations of medical implants, e.g. cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). One of the major safety risks associated with MRI examinations of pacemaker and ICD patients is RF induced heating of the pacing electrodes. The design of MRI-safe (or MRI-conditional) pacing electrodes requires elaborate testing. In a first step, many different electrode shapes, electrode positions and sequence parameters are tested in a gel phantom with its geometry and conductivity matched to a human body. The resulting temperature increase is typically observed using temperature probes that are placed at various positions in the gel phantom. An alternative to this local thermometry approach is to use MRI for the temperature measurement. Chapter 5 describes a new approach for MRI thermometry that allows MRI thermometry during RF heating caused by the MRI sequence itself. Specifically, a proton resonance frequency (PRF) shift MRI thermometry method was combined with an MR heating sequence. The method was validated in a gel phantom, with a copper wire serving as a simple model for a medical implant.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Gutberlet2011, author = {Gutberlet, Marcel}, title = {K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverh{\"a}ltnis, Abbildungsqualit{\"a}t und Messzeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Magnet-Resonanz (MR)-Bildgebung ist mit vielf{\"a}ltigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch f{\"u}hrt die stark limitierte Messzeit h{\"a}ufig zu einer Einschr{\"a}nkung der erzielbaren r{\"a}umlichen Aufl{\"o}sung und Abdeckung, einer Beschr{\"a}nkung des Signal-zu-Rauschverh{\"a}ltnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. W{\"a}hrend in der PPA die unterschiedlichen Sensitivit{\"a}ten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivit{\"a}t die Bildphase als zus{\"a}tzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverst{\"a}rkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen {\"u}bertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden k{\"o}nnen. Dadurch kann die Rauschverst{\"a}rkung aufgrund der Spulengeometrie ohne zus{\"a}tzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelm{\"a}ßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierf{\"u}r liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings f{\"u}hrt die regelm{\"a}ßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachtr{\"a}gliches Filtern f{\"u}hrt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung erm{\"o}glicht die Reduktion der Signal-Kontamination bei optimalem SNR, f{\"u}hrt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erh{\"o}hung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien f{\"u}r die DW-Bildgebung, die eine Erh{\"o}hung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringf{\"u}gige Reduktion des SNR-Vorteils der DW-Bildgebung gegen{\"u}ber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zus{\"a}tzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution f{\"u}r die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverl{\"a}ngerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung f{\"u}hrt im Fall einer Unterabtastung zu deutlich geringeren, inkoh{\"a}renten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die r{\"a}umliche Aufl{\"o}sung, das SNR und das FOV erh{\"o}ht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspr{\"a}paration (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation w{\"a}hrend der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualit{\"a}t bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16\% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Weber2011, author = {Weber, Daniel}, title = {Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden f{\"u}r die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Kl{\"a}rung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgef{\"u}hrt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Isch{\"a}mie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsm{\"o}glichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Ver{\"a}nderung der Narbe im Zeitverlauf. Oxygenierungsmessung am M{\"a}useherz in vivo Die Charakterisierung einer Infarktnarbe kann auch {\"u}ber die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft {\"u}ber die Vaskularisierung und Viabilit{\"a}t des Gewebes geben kann. Zugang zu diesem Parameter erh{\"a}lt man {\"u}ber T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten M{\"a}usen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgef{\"u}hrt. Die Aufl{\"o}sung war ausreichend, um auch nach Infarkt extrem ausged{\"u}nnte Myokardw{\"a}nde gut aufl{\"o}sen und charakterisieren zu k{\"o}nnen. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde dar{\"u}ber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus ver{\"a}nderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte gr{\"o}ßer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen v{\"o}llig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen {\"u}ber die Diffusion unabh{\"a}ngig von der limitierenden T2-Zeit gewonnen werden k{\"o}nnen. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Pr{\"a}paration werden zun{\"a}chst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort ges{\"a}ttigt. Bis zur n{\"a}chsten S{\"a}ttigung ist das Verhalten der Magnetisierung abh{\"a}ngig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abh{\"a}ngt. Im Rahmen dieser Arbeit wurden die Abh{\"a}ngigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgef{\"u}hrt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte.}, subject = {Kernspintomografie}, language = {de} }