@phdthesis{Weil2001, author = {Weil, Kerstin}, title = {3-(R)-Hydroxys{\"a}uren als Produkte selektiven Fetts{\"a}ureabbaus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {In der vorliegenden Arbeit werden Studien zur selektiven bakteriellen Hydroxylierung von Fetts{\"a}uren vorgestellt. Unter Verwendung von Linols{\"a}ure als Substrat wurden aus Bodenproben verschiedene Mikroorganismen isoliert, die polare Metabolite bildeten. Die ph{\"a}notypische und genotypische Charakterisierung eines Stammes f{\"u}hrte zu dessen Identifizierung als Stenotrophomonas maltophilia. Die Strukturaufkl{\"a}rung der drei Hauptreaktionsprodukte erfolgte mittels Hochleistungsfl{\"u}ssigchromatographie-Massenspektrometrie (HPLC-MS), Gaschromatographie-Massenspektrometrie (GC-MS) sowie ein- und zweidimensionalen NMR-Experimenten (1H-NMR, 13C-NMR, 13C-DEPT, H/H-COSY, HMQC, HMBC). Linols{\"a}ure wurde von Stenotrophomonas maltophilia zu 3-Hydroxy-Z6-dodecens{\"a}ure, 3-Hydroxy-Z5,Z8-tetradecadiens{\"a}ure und 3-Hydroxy-Z7,Z10-hexadecadiens{\"a}ure umgesetzt. In einem anschließenden Substratscreening wurden 32 Verbindungen als Edukte f{\"u}r die Biotransformation eingesetzt und so die strukturellen Voraussetzungen ermittelt, die f{\"u}r eine effiziente Umsetzung von Fetts{\"a}uren durch Stenotrophomonas maltophilia notwendig sind. Zum Einsatz kamen Substrate mit unterschiedlicher Anzahl an C-Atomen sowie mit Variationen bez{\"u}glich Anzahl, Position und Konformation von Doppelbindungen. Weiterhin wurden Substanzen verwendet, die bereits funktionelle Gruppen im Molek{\"u}l aufwiesen (z. B. Ricinols{\"a}ure). Die Bestimmung der Enantiomerenverteilung der bakteriell gebildeten 3-Hydroxys{\"a}uren mittels multidimensionaler Gaschromatographie (MDGC) ergab einen deutlichen Enantiomeren{\"u}berschuss (ee 84 - 98 Prozent). Die Aufkl{\"a}rung der Absolutkonfiguration erfolgte {\"u}ber die Synthese von Dodecan-1,3-diolen und deren anschließende Analytik mittels MDGC. Zus{\"a}tzlich wurde die Konfiguration mit Hilfe der CD Exciton Chirality-Methode bestimmt. Weiterhin wurde untersucht, ob die bakteriell gebildeten 3-Hydroxys{\"a}uren als Substrate oder Inhibitoren des Enzyms Lipoxygenase L-1 aus Sojabohnen fungieren. Die im Rahmen dieser Arbeit durchgef{\"u}hrten Studien zur Darstellung von optisch aktiven 3-Hydroxys{\"a}uren belegen das Potential des Bodenbakteriums Stenotrophomonas maltophilia, exogen zugef{\"u}hrte Fetts{\"a}uren im Rahmen der b-Oxidation zu kettenverk{\"u}rzten, an Position 3 hydroxylierten Metaboliten abzubauen. Dabei liegen jedoch deutliche Abweichungen zur b-Oxidation in anderen Organismen vor, die auf Unterschieden in der Enzymausstattung bzw. deren Aktivit{\"a}t beruhen. Durch die gewonnenen Erkenntnisse zum b-Oxidationsmechanismus in Stenotrophomonas maltophilia kann diese Aktivit{\"a}t durch geeignete Substratauswahl gezielt zur Synthese von optisch aktiven 3-Hydroxys{\"a}uren eingesetzt werden, deren chemische Synthese gegen{\"u}ber dieser Biotransformation deutlich schwieriger zu realisieren ist. F{\"u}r solche Verbindungen besteht in der organischen Synthese von Naturstoffen wie Pheromonen, Vitaminen und Antibiotika Bedarf.}, subject = {Bodenbakterien}, language = {de} } @phdthesis{Colnot2001, author = {Colnot, Thomas}, title = {Beurteilung von Phyto- und Xeno{\"o}strogenen am Beispiel ausgew{\"a}hlter Substanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Bei Daidzein und Bisphenol A handelt es sich um zwei Vertreter einer Klasse von Stoffen, die als „Umwelthormone" (engl. endocrine disrupter) bezeichnet werden. Aus der Gruppe der Phyto{\"o}strogene wurde Daidzein als wichtiger Vertreter, der in hohen Konzentrationen in vielen Nutzpflanzen und Nahrungsmitteln vorkommt, ausgew{\"a}hlt. Sojaprodukte, die den gr{\"o}ßten Beitrag einer menschlichen Exposition gegen Daidzein liefern, werden in zunehmendem Maße auch in westlichen L{\"a}ndern konsumiert. Bisphenol A wurde als Vertreter der Xeno{\"o}strogene gew{\"a}hlt, da es - was Weltjahresproduktion und Verwendung angeht - die wohl wichtigste Substanz dieser Gruppe darstellt. Im ersten Teil der Arbeit wurde die Biotransformation und Toxikokinetik der beiden Verbindungen nach oraler Gabe in der Ratte aufgekl{\"a}rt. Dabei konnte gezeigt werden, daß die orale Bioverf{\"u}gbarkeit beider Substanzen in der Ratte sehr gering war. Maximal zehn Prozent der jeweils applizierten Dosis konnten im Urin der Tiere wiedergefunden werden. Als Hauptmetabolit wurden sowohl von Daidzein als auch von Bisphenol A das jeweilige Glucuronid-Konjugat gebildet. Bei Daidzein {\"u}berwog in der m{\"a}nnlichen Ratte zus{\"a}tzlich das Sulfat-Konjugat. Der Anteil an freier, d.h. unkonjugierter Verbindung betrug im Urin der Tiere zwischen 1 und 3 Prozent der Dosis. Außer den Phase II-Konjugaten, die aufgrund ihrer mangelnden {\"o}strogenen Wirksamkeit zu einer Detoxifizierung der beiden Verbindungen f{\"u}hrte, konnten nach Gabe von Bisphenol A in der Ratte keine weiteren Metabolite identifiziert werden. Nach Exposition mit Daidzein konnten in den Faeces der Tiere in geringem Umfang die beiden reduktiven Metabolite Equol und O-DMA gefunden werden. Diese wurden wahrscheinlich im Magen-Darm-Trakt durch die Bakterien der Darmflora gebildet. Sowohl Daidzein als auch Bisphenol A wurden bei der Ratte nur unvollst{\"a}ndig aus dem Magen-Darm-Trakt resorbiert; der Großteil der gegebenen Dosis wurde als unver{\"a}nderte Substanz in den Faeces wiedergefunden. Bei Bisphenol A wurde die Ausscheidung zudem durch einen ausgepr{\"a}gten enterohepatischen Kreislauf verz{\"o}gert. Im zweiten Teil der Arbeit wurden zun{\"a}chst empfindliche GC/MS- und HPLC-Methoden zur Quantifizierung der Verbindungen in humanen Plasma- und Urinproben entwickelt. Danach wurden freiwillige Probanden oral mit jeweils 5 mg Daidzein bzw. d16-Bisphenol A exponiert, um Daten zur Biotransformation und Toxikokinetik der beiden Substanzen im Mensch zu erhalten. Wegen des deutlich meßbaren Hintergrundes an Bisphenol A, das in allen Kontrollproben nachweisbar war, wurde f{\"u}r die Humanstudie die deuterierte Verbindung gegeben, f{\"u}r die kein st{\"o}render Hintergrund meßbar war. Die Bioverf{\"u}gbarkeit der Gesamt-Substanz (freie Verbindung + Konjugate) im Menschen war in beiden F{\"a}llen deutlich h{\"o}her als in der Ratte. Von Daidzein wurden 40 Prozent (Ratte 10 Prozent), von Bisphenol A > 95 Prozent (Ratte 13 Prozent) der applizierten Dosis im Urin der Probanden wiedergefunden. Dabei zeigte sich ein sehr effizienter Phase II-Metabolismus; weniger als 1 Prozent der Glucuronid-Konjugatkonzentrationen wurden als unver{\"a}nderte Substanz gefunden. Das Glucuronid stellte in beiden F{\"a}llen den einzigen nachweisbaren Metaboliten dar. Die Elimination von Daidzein und Bisphenol A verlief in den beiden Studien sehr schnell nach einer Kinetik erster Ordnung. Im Gegensatz zu der Ratte konnten auch bei Bisphenol A keine Auff{\"a}lligkeiten in den Ausscheidungskurven beobachtet werden, Hinweise auf einen enterohepatischen Kreislauf im Menschen wurden nicht gefunden. Im Falle von Bisphenol A wurde fast die komplette applizierte Dosis (> 95 Prozent) in Form des Glucuronides im Urin wiedergefunden. Anhand der erhobenen Daten wurde anschließend eine Beurteilung des Risikos f{\"u}r den Menschen abgegeben.}, subject = {Phyto{\"o}strogen}, language = {de} }