@phdthesis{Spanheimer2009, author = {Spanheimer, Daniela Cornelia}, title = {Dynamische Leistungsverst{\"a}rkung bei GHz Frequenzen und Speichereigenschaften von nanoelektronischen GaAs/AlGaAs Transistoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37589}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Es wurde gezeigt, dass durch die Vorpositionierung von Quantenpunkten, diese mit einem gezielten Abstand im Bereich von einigen 100 nm zueinander und daher mit einer definierten Dichte in Speicherbauelemente eingebracht werden k{\"o}nnen. Es wurde bei tiefen Temperaturen wohldefinierte Coulombblockade demonstriert. Durch die Analyse der Coulomb-Rauten war es m{\"o}glich, auf die Gr{\"o}ße und Ladeenergie von Quantenpunkten im Kanal zu schliessen. Es wurde gezeigt, dass vorpositionierte Quantenpunkte sehr gut als Floating Gate eingesetzt werden k{\"o}nnen. Die Speichereigenschaften dieser Quantenpunkte wurden im Hinblick auf die Hysteresebreite DeltaVth in Abh{\"a}ngigkeit der Kanalbreite, der Drainspannung und der Temperatur untersucht und diskutiert. Hierbei konnte eine deutliche Abh{\"a}ngigkeit der Thresholdspannung von der Kanalbreite der Struktur ermittelt werden. F{\"u}r Strukturen mit einem breiten Kanal wurde festgestellt, dass der Stromfluss bereits bei negativen Gatespannungen einsetzt, w{\"a}hrend f{\"u}r schmale Strukturen positive Gatespannungen n{\"o}tig sind, um einen Ladungstransport hervorzurufen. Zur Bestimmung der Temperaturstabilit{\"a}t der Ladezust{\"a}nde wurde sowohl die Thresholdspannung als auch die Hysteresebreite als Funktion der Probentemperatur im Bereich von 4.2K bis Raumtemperatur bei verschiedenen Drainspannungen bestimmt. Hierbei wurde festgestellt, dass die Hysteresebreite bis zu einer kritischen Temperatur stufenf{\"o}rmig abnimmt und danach wieder leicht ansteigt. Bei der Untersuchung der Threshold- Spannung wurde ein Unterschied Vth,zu und Vth,auf festgestellt. Erstmals konnte ein lateral und vertikal positionierter InAs Quantenpunkt als Speicher f{\"u}r den Betrieb bei Raumtemperatur demonstriert werden. Ferner wurde die Wirkung eines Gate-Leckstromes auf den gemessenen Drain- Strom eines monolithischen Drei-Kontakt-Struktur untersucht und diskutiert. Die untersuchten Proben basieren auf einem neuen Parallel-Design, in welchem das Gate nicht wie {\"u}blich zwischen Source und Drain positioniert wurde, sondern in serieller Verbindung mit dem Drain- oder Sourcekontakt, d.h. mit einem zentralen Drain zwischen Source und Gate, gesetzt wurde. Hierdurch konnte eine merkliche Reduzierung des Probeninnenwiderstandes erreicht werde. Zu Beginn wurden zur Charakterisierung der Probe Transportmessungen bei Raumtemperatur durchf{\"u}hrt. Hierbei konnte verglichen mit herk{\"o}mmlichen Quantendrahttranistoren realisiert auf demselbenWafer, zum einen eine deutlich h{\"o}here Transconductance durch das parallele Design erreicht werden. Zum anderen zeigte die ermittelte Transconductance nicht den erwarteten linearen Verlauf in Abh{\"a}ngigkeit der Drainspannung, sondern einen quadratischen. Die Messungen zeigten außerdem einen Abfall des Drain-Stromes ab einer kritischen Gr{\"o}ße des Gate-Leckstromwertes, welcher auf ein dynamisches Gate, hervorgerufen durch die Ladungstr{\"a}ger aus dem Gate, zur{\"u}ckgef{\"u}hrt wird. Diese zus{\"a}tzliche virtuelle Kapazit{\"a}t addiert sich in paralleler Anordnung zum geometrischen Gate-Kondensator und verbessert die Transistoreigenschaften. Zum Abschluss der Arbeit wurden Hochfrequenzmessungen zur Ermittlung einer Leistungsverst{\"a}rkung von Drei-Kontakt-Strukturen bei Raumtemperatur f{\"u}r unterschiedliche Gate- und Drainspannungen durchgef{\"u}hrt. Um die Hochfrequenzeigenschaften der untersuchten Probe zu erh{\"o}hen, wurde hierf{\"u}r ein Design gew{\"a}hlt, in welchem die Goldkontakte zur Kontaktierung sehr nahe an die aktive Region heranragen. F{\"u}r diese Spannungskombination konnte f{\"u}r eine Frequenz im Gigaherz-Bereich eine positive Spannungsverst{\"a}rkung > 1 dB gemessen werden. H{\"o}here Spannungen f{\"u}hren zu einem S{\"a}ttigungswert in der Leistungsverst{\"a}rkung. Dies wird zur{\"u}ckgef{\"u}hrt auf den maximal zur Verf{\"u}gung stehenden Strom in der aktiven Region zwischen den nahen Goldkontakten. Zudem wurde eine L{\"o}sung vorgestellt, um das fundamentale Problem der Impedanzfehlanpassung f{\"u}r Hochfrequenzmessungen von nanoelektronischen Bauelementen mit einem hohen Innerwiderstand zu l{\"o}sen. Eine Anpassung der unterschiedlichen Impedanzen zwischen Bauelement und Messapparatur ist unbedingt notwendig, um Reflexionen bei der {\"U}bertragung zu vermeiden und somit die Gewinnoptimierung zu erh{\"o}hen. Zur Behebung der Fehlanpassung wurde im Rahmen dieser Arbeit ein Impedanz-Anpassungs-Netzwerk auf einer PCB-Platine realisiert, welches mit der Probe verbunden wurde. Die Anpassung wurde durch eingebaute Strichleitungen in das Layout des Anpassungsboards vorgenommen. Durchgef{\"u}hrte Simulationen der Probe in Verbindung mit dem Anpassungs-Netzwerk best{\"a}tigten die experimentellen Ergebnisse. Durch die Anpassung konnte der simulierte Reflexionskoeffizient deutlich reduziert werden, bei gleichzeitiger Erh{\"o}hung des Transmissionskoeffizienten. Ebenfalls zeigten die Messungen an einer Drei-Kontakt-Struktur mit Anpassungs-Board eine signifikante Verbesserung der Leistungsverst{\"a}rkung.}, subject = {Verst{\"a}rkung}, language = {de} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} } @phdthesis{Hartmann2008, author = {Hartmann, David}, title = {Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Hetero{\"u}berg{\"a}ngen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfl{\"a}che ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer {\"A}tztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorz{\"u}ge derartiger Strukturen zeigen sich im ballistischen Elektronentransport {\"u}ber mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendr{\"a}hte sowie y-f{\"o}rmig verzweigte Strukturen untersucht, deren Kanalleitwert {\"u}ber seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen {\"u}berwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgef{\"u}hrt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verst{\"a}rkungseigenschaften und kapazitiven Kopplungen zwischen Nanodr{\"a}hten, der Realisierung von komplexen Logikfunktionen wie Z{\"a}hler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzph{\"a}nomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes.}, subject = {Niederdimensionales Elektronengas}, language = {de} }