@article{LiuLegareSeufertetal.2020, author = {Liu, Siyuan and L{\´e}gar{\´e}, Marc-Andr{\´e} and Seufert, Jens and Prieschl, Dominic and Rempel, Anna and Englert, Lukas and Dellermann, Theresa and Paprocki, Valerie and Stoy, Andreas and Braunschweig, Holger}, title = {2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent}, series = {Inorganic Chemistry}, volume = {59}, journal = {Inorganic Chemistry}, number = {15}, doi = {10.1021/acs.inorgchem.0c01383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215595}, pages = {10866-10873}, year = {2020}, abstract = {2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R-B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal-borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond.}, language = {en} } @unpublished{EnglertStoyArrowsmithetal.2019, author = {Englert, Lukas and Stoy, Andreas and Arrowsmith, Merle and M{\"u}ssig, Jonas H. and Thaler, Melanie and Deißenberger, Andrea and H{\"a}fner, Alena and B{\"o}hnke, Julian and Hupp, Florian and Seufert, Jens and Mies, Jan and Damme, Alexander and Dellermann, Theresa and Hammond, Kai and Kupfer, Thomas and Radacki, Krzysztof and Thiess, Torsten and Braunschweig, Holger}, title = {Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201901437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184888}, year = {2019}, abstract = {A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.}, language = {en} } @phdthesis{Englert2022, author = {Englert, Lukas}, title = {Synthese und Reaktivit{\"a}t Phosphan-stabilisierter Diborene}, doi = {10.25972/OPUS-24136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Reaktivit{\"a}t von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweiz{\"a}hnigen (84a-87c) und einz{\"a}hnigen Phosphanen (43a-c; 88a-89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen F{\"a}llen gelang es mithilfe der Molek{\"u}lstrukturen im Festk{\"o}rper die Verbindungen n{\"a}her zu untersuchen. Dabei konnten erstmalig Phosphan-verbr{\"u}ckte Diboran(6)-Verbindungen 86a-87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zur{\"u}ckzuf{\"u}hren ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise f{\"u}r die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur f{\"u}r 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-{\"U}bergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend f{\"u}r eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der r{\"a}umliche Anspruch der Phosphane einen entscheidenden Stabilit{\"a}tsfaktor f{\"u}r das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a-98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbr{\"u}ckten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen f{\"u}r diese Verbindungsklasse typische NMR-spektroskopische und r{\"o}ntgenkristallographische Messdaten. Zus{\"a}tzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden n{\"a}her analysiert. Das Hauptaugenmerk der durchgef{\"u}hrten Forschungsarbeiten lag auf der Untersuchung der Reaktivit{\"a}t des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels f{\"u}r ein strukturell aufgekl{\"a}rtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollst{\"a}ndige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festk{\"o}rper und quantenchemisch n{\"a}her untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizit{\"a}t. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). W{\"a}hrend f{\"u}r die Umsetzungen mit diversen Silanen nur {\"u}ber die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufkl{\"a}rung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallr{\"o}ntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112-113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zus{\"a}tzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H-1H-NOESY-NMR-Experimenten best{\"a}tigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivit{\"a}tsverhalten gegen{\"u}ber kleinen Molek{\"u}len. Nach dem Austausch der Schutzgasatmosph{\"a}re gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. G{\"a}nzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molek{\"u}len und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festk{\"o}rperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da f{\"u}r alle drei Strukturvorschl{\"a}ge experimentelle Hinweise gefunden werden k{\"o}nnen. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erh{\"o}htem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen f{\"u}hrten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. F{\"u}r beide Reaktivit{\"a}ten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schl{\"u}sselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich f{\"u}r eine Vielzahl an Reaktivit{\"a}ten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen unges{\"a}ttigten Substraten. Die Reaktivit{\"a}t gegen{\"u}ber Aziden konnte hierbei nicht vollst{\"a}ndig aufgekl{\"a}rt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a-c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abh{\"a}ngig war. Das Azadiboretidin 123a konnte im Festk{\"o}rper n{\"a}her untersucht werden und stellt ein seltenes Beispiel f{\"u}r einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollst{\"a}ndig aufgekl{\"a}rtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-R{\"u}ckgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen f{\"u}r 124a {\"a}hnliche Bindungsparameter wie f{\"u}r ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen f{\"u}hrte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a-d. In L{\"o}sung konnten f{\"u}r 126c/d zus{\"a}tzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10\% NMR-spektroskopisch beobachtet werden. Im Festk{\"o}rper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen best{\"a}tigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabst{\"a}nden innerhalb der BCsp2B-Einheiten von 126a-c und 127d unterst{\"u}tzt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten l{\"a}sst. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festk{\"o}rper gibt einen Hinweis auf eine anf{\"a}ngliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die {\"u}ber eine 1,3-Umlagerung zur Bildung der 1,3-Diborete f{\"u}hrt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4-Diethinylbenzol die Darstellung der Mono- und Bis(1,3-dihydro-1,3-diborete) 128 und 129, wobei 129 nur im Festk{\"o}rper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5-Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen f{\"u}r das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen {\"u}ber den zentralen Benzolring voraus, was die Ursache f{\"u}r die beobachtete Fluoreszenz sein k{\"o}nnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a-e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem r{\"a}umlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen L{\"o}slichkeit in g{\"a}ngigen L{\"o}sungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abh{\"a}ngig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilit{\"a}t der Diborane(4) 132b/c gegen{\"u}ber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gew{\"a}hlten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivit{\"a}t wurde jedoch im Rahmen dieser Arbeit nicht durchgef{\"u}hrt. Die Schl{\"u}sselschritte des Reaktionsmechanismus zur Bildung von 133 f{\"u}hren h{\"o}chstwahrscheinlich wieder {\"u}ber das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse {\"u}ber die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane er{\"o}ffnen diesen Diborenen eine einzigartige Reaktivit{\"a}t, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft k{\"o}nnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. W{\"u}nschenswert w{\"a}re es die Diboren-Monomere miteinander zu Ketten zu verkn{\"u}pfen.}, subject = {Bor}, language = {de} }