@phdthesis{Shkumatov2011, author = {Shkumatov, Alexander V.}, title = {Methods for hybrid modeling of solution scattering data and their application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Small-angle X-ray scattering (SAXS) is a universal low-resolution method to study proteins in solution and to analyze structural changes in response to variations of conditions (pH, temperature, ionic strength etc). SAXS is hardly limited by the particle size, being applicable to the smallest proteins and to huge macromolecular machines like ribosomes and viruses. SAXS experiments are usually fast and require a moderate amount of purified material. Traditionally, SAXS is employed to study the size and shape of globular proteins, but recent developments have made it possible to quantitatively characterize the structure and structural transitions of metastable systems, e.g. partially or completely unfolded proteins. In the absence of complementary information, low-resolution macromolecular shapes can be reconstructed ab initio and overall characteristics of the systems can be extracted. If a high or low-resolution structure or a predicted model is available, it can be validated against the experimental SAXS data. If the measured sample is polydisperse, the oligomeric state and/or oligomeric composition in solution can be determined. One of the most important approaches for macromolecular complexes is a combined ab initio/rigid body modeling, when the structures (either complete or partial) of individual subunits are available and SAXS data is employed to build the entire complex. Moreover, this method can be effectively combined with information from other structural, computational and biochemical methods. All the above approaches are covered in a comprehensive program suite ATSAS for SAXS data analysis, which has been developed at the EMBL-Hamburg. In order to meet the growing demands of the structural biology community, methods for SAXS data analysis must be further developed. This thesis describes the development of two new modules, RANLOGS and EM2DAM, which became part of ATSAS suite. The former program can be employed for constructing libraries of linkers and loops de novo and became a part of a combined ab initio/rigid body modeling program CORAL. EM2DAM can be employed to convert electron microscopy maps to bead models, which can be used for modeling or structure validation. Moreover, the programs CRYSOL and CRYSON, for computing X-ray and neutron scattering patterns from atomic models, respectively, were refurbished to work faster and new options were added to them. Two programs, to be contributed to future releases of the ATSAS package, were also developed. The first program generates a large pool of possible models using rigid body modeling program SASREF, selects and refines models with lowest discrepancy to experimental SAXS data using a docking program HADDOCK. The second program refines binary protein-protein complexes using the SAXS data and the high-resolution models of unbound subunits. Some results and conclusions from this work are presented here. The developed approaches detailed in this thesis, together with existing ATSAS modules were additionally employed in a number of collaborative projects. New insights into the "structural memory" of natively unfolded tau protein were gained and supramodular structure of RhoA-specific guanidine nucleotide exchange factor was reconstructed. Moreover, high resolution structures of several hematopoietic cytokine-receptor complexes were validated and re-modeled using the SAXS data. Important information about the oligomeric state of yeast frataxin in solution was derived from the scattering patterns recorded under different conditions and its flexibility was quantitatively characterized using the Ensemble Optimization Method (EOM).}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {en} } @phdthesis{Schummer2021, author = {Schummer, Bernhard}, title = {Stabilisierung von CdS Nanopartikeln mittels Pluronic P123}, doi = {10.25972/OPUS-23844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb {\"a}ußerst interessant, da seine Bandl{\"u}cke als Nanopartikel verschiebbar ist. F{\"u}r die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandl{\"u}ckenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS f{\"u}r einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandl{\"u}ckenverschiebung dort nicht auftritt. Wissenschaftler bem{\"u}hen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in w{\"a}ssrigen L{\"o}sungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien f{\"u}r die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, m{\"u}ssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandl{\"u}cke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der L{\"o}sung von CdS im Tr{\"a}gerstoff, da CdS in den meisten Fl{\"u}ssigkeiten nicht l{\"o}slich ist und ausf{\"a}llt. Die Stabilisierung in w{\"a}ssrigen L{\"o}sungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigs{\"a}ure EDTA erfolgreich durchgef{\"u}hrt. Mit EDTA k{\"o}nnen jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem k{\"o}nnen Parameter wie Gr{\"o}ße und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr {\"a}hnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser l{\"o}slich sind (Bsp. Kurkumin). Ein vielversprechender L{\"o}sungsweg ist dort, die Wirkstoffe in große Tr{\"a}gerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut l{\"o}slich sind. In meiner Arbeit habe ich genau diesen Ansatz f{\"u}r CdS verfolgt. Als Tr{\"a}gerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gew{\"a}hlt, da es die gr{\"o}ßte Masse bei gleichzeitig h{\"o}chstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenl{\"a}nge hat. P123 ist ein tern{\"a}res Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei B{\"o}cken, dem mittlere Block Polypropylenoxid PPO und den beiden {\"a}ußeren Bl{\"o}cken Polyethylenoxid PEO. Der Buchstabe P steht f{\"u}r past{\"o}s, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molek{\"u}len kann bewusst {\"u}ber geringe Temperatur{\"a}nderungen gesteuert werden. Bei ungef{\"a}hr Raumtemperatur liegen Mizellen vor, die sich bei h{\"o}heren Temperaturen von sph{\"a}rischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Fl{\"u}ssigkristall. Ich habe in meiner Arbeit zun{\"a}chst P123 mit Hilfe von R{\"o}ntgenstreuung untersucht. Anders als andere Methoden gibt R{\"o}ntgenstreuung direkten Aufschluss {\"u}ber die Morphologie der Stoffe. R{\"o}ntgenstreuung kann die Mischung von P123 mit CdS abbilden und l{\"a}sst darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. F{\"u}r die Stabilisierung der Nanopartikel ist es zun{\"a}chst notwendig die richtigen Temperaturen f{\"u}r die Ausgangsl{\"o}sungen und gemischten L{\"o}sungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch f{\"u}r die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung f{\"u}r Fl{\"u}ssigkeiten f{\"u}rs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschl{\"u}sseln. Diese R{\"o}ntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu k{\"o}nnen. R{\"o}ntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Fl{\"u}ssigkeit und in verschiedenen Konzentrationen analysiert werden kann. F{\"u}r die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabh{\"a}ngige Verhalten von P123 pr{\"a}zise mit R{\"o}ntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. F{\"u}r 5 wtp konnten die Gr{\"o}ßen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration f{\"u}r diese Konzentration konnten dank des neu eingef{\"u}hrten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgesch{\"a}tzt, sowie eine Hysterese zwischen dem Heizen und Abk{\"u}hlen festgestellt werden. F{\"u}r die Konzentration von 10 wtp wurden kleinere Temperaturschritte gew{\"a}hlt und die Messungen zus{\"a}tzlich absolut kalibriert. Es wurden die Gr{\"o}ßen und Streul{\"a}ngendichten SLD der Unimere und Mizellen pr{\"a}zise bestimmt und ein vollst{\"a}ndiges Form-Phasendiagramm erstellt. Auch f{\"u}r diese Konzentration konnte eine Hysterese eindeutig an der Gr{\"o}ße, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen {\"u}ber die Hydrierung und Hysterese komplexer Kern-H{\"u}lle Modelle zu machen. F{\"u}r die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergr{\"o}ßert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abh{\"a}ngigkeit der Temperatur. Durch das Mischen zweier L{\"o}sungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbf{\"a}rbung der L{\"o}sung, und somit die Bildung des CdS, in Abh{\"a}ngigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. H{\"o}here Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandl{\"u}cke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandl{\"u}cke von ungef{\"a}hr 0,05 eV im Vergleich zum Festk{\"o}rper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die fl{\"u}ssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht {\"a}ndert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Fl{\"u}ssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizit{\"a}t stabilisiert. Die Anfangs definierten Kriterien f{\"u}r eine erfolgreiche Stabilisierung wurden erf{\"u}llt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Fl{\"u}ssigkristalls, als auch im Kern der Mizelle zu stabilisieren.}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {de} } @phdthesis{Scherdel2009, author = {Scherdel, Christian}, title = {Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Hochpor{\"o}se Kohlenstoffaerogele, die {\"u}ber den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengr{\"u}nden auf g{\"u}nstigere Materialien mit vergleichsweise schlechteren Eigenschaften zur{\"u}ckgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten f{\"u}r Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kosteng{\"u}nstige Edukte und/oder einfache Prozessierung zur{\"u}ckgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgew{\"a}hlt. Die hergestellten Kohlenstoffe wurden haupts{\"a}chlich mit Elektronenmikroskopie, Gassorption und R{\"o}ntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten f{\"u}r das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sph{\"a}rischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine v{\"o}llig neue M{\"o}glichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parameters{\"a}tzen hin vervollst{\"a}ndigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgr{\"o}ße h{\"a}ngt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startl{\"o}sung ab. Die ermittelte untere Grenze der Partikelgr{\"o}ße aus stabilen kolloidalen Dispersionen betr{\"a}gt ca. 30 nm. Gr{\"o}ßere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Absch{\"a}tzung {\"u}ber den Aggregationsgrad der Kohlenstoffpulver wurde durchgef{\"u}hrt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgr{\"o}ße und erzeugt zunehmend nicht-sph{\"a}rische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgr{\"o}ßen stimmen gut {\"u}berein. Bei der Pyrolyse schrumpfen die Partikel auf 84\% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung por{\"o}ser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgef{\"u}hrt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung mit Na2CO3 als basischem Katalysator prinzipiell por{\"o}se Xerogele herstellbar sind; allerdings verhindert eine ungew{\"o}hnliche Gelierkinetik (Flockenbildung statt Sol-Gel-{\"U}bergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gew{\"a}hrleistet ist. Bei Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks w{\"a}hrend der Trocknung. Lediglich bei hohem Formaldehyd{\"u}berschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als L{\"o}sungsmittel. Hier sind hochpor{\"o}se Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und f{\"u}r Xerogele sehr hoher Mesoporosit{\"a}t von bis zu Vmeso = 0,85 cm3/g m{\"o}glich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen {\"u}ber konvektive Trocknung homogene hochpor{\"o}se Xerogel-Formk{\"o}rper auf PF-Basis zu synthetisieren. Aus der {\"U}berwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse {\"u}ber exo- und endotherme Vorg{\"a}nge gewonnen werden. Zudem zeigt die Zeitabh{\"a}ngigkeit der Soltemperatur Gemeinsamkeiten f{\"u}r alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ans{\"a}tze zuverl{\"a}ssig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. f{\"u}r die Kombination mit Partikeltechnologien, m{\"o}glich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollst{\"a}ndige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) f{\"u}r das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein.}, subject = {Sol-Gel-Verfahren}, language = {de} } @phdthesis{Bartossek2018, author = {Bartossek, Thomas}, title = {Structural and functional analysis of the trypanosomal variant surface glycoprotein using x-ray scattering techniques and fluorescence microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144775}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Trypanosoma brucei is an obligate parasite and causative agent of severe diseases affecting humans and livestock. The protist lives extracellularly in the bloodstream of the mammalian host, where it is prone to attacks by the host immune system. As a sophisticated means of defence against the immune response, the parasite's surface is coated in a dense layer of the variant surface glycoprotein (VSG), that reduces identification of invariant epitopes on the cell surface by the immune system to levels that prevent host immunity. The VSG has to form a coat that is both dense and mobile, to shield invariant surface proteins from detection and to allow quick recycling of the protective coat during immune evasion. This coat effectively protects the parasite from the harsh environment that is the mammalian bloodstream and leads to a persistent parasitemia if the infection remains untreated. The available treatment against African Trypanosomiasis involves the use of drugs that are themselves severely toxic and that can lead to the death of the patient. Most of the drugs used as treatment were developed in the early-to-mid 20th century, and while developments continue, they still represent the best medical means to fight the parasite. The discovery of a fluorescent VSG gave rise to speculations about a potential interaction between the VSG coat and components of the surrounding medium, that could also lead to a new approach in the treatment of African Trypanosomiasis that involves the VSG coat. The initially observed fluorescence signal was specific for a combination of a VSG called VSG'Y' and the triphenylmethane (TPM) dye phenol red. Exchanging this TPM to a bromo-derivative led to the observation of another fluorescence effect termed trypanicidal effect which killed the parasite independent of the expressed VSG and suggests a structurally conserved feature between VSGs that could function as a specific drug target against T. b. brucei. The work of this thesis aims to identify the mechanisms that govern the unique VSG'Y' fluorescence and the trypanocidal effect. Fluorescence experiments and protein mutagenesis of VSG'Y' as well as crystallographic trials with a range of different VSGs were utilized in the endeavour to identify the binding mechanisms between TPM compounds and VSGs, to find potentially conserved structural features between VSGs and to identify the working mechanisms of VSG fluorescence and the trypanocidal effect. These trials have the potential to lead to the formulation of highly specific drugs that target the parasites VSG coat. During the crystallographic trials of this thesis, the complete structure of a VSG was solved experimentally for the first time. This complete structure is a key component in furthering the understanding of the mechanisms governing VSG coat formation. X-ray scattering techniques, involving x-ray crystallography and small angle x-ray scattering were applied to elucidate the first complete VSG structures, which reveal high flexibility of the protein and supplies insight into the importance of this flexibility in the formation of a densely packed but highly mobile surface coat.}, subject = {Trypanosoma brucei brucei}, language = {en} }