@article{HellenbrandClausSchinketal.2016, author = {Hellenbrand, Wiebke and Claus, Heike and Schink, Susanne and Marcus, Ulrich and Wichmann, Ole and Vogel, Ulrich}, title = {Risk of Invasive Meningococcal Disease in Men Who Have Sex with Men: Lessons Learned from an Outbreak in Germany, 2012-2013}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0160126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166842}, pages = {e0160126}, year = {2016}, abstract = {Background We undertook investigations in response to an invasive meningococcal disease (IMD) outbreak in men who have sex with men (MSM) in Berlin 2012-2013 to better understand meningococcal transmission and IMD risk in MSM. Methods We retrospectively searched for further IMD cases in MSM in Germany through local health departments and undertook exploratory interviews. We performed antigen sequence typing, characterized fHbp and aniA genes of strains with the outbreak finetype and reviewed epidemiologically or spatiotemporally linked cases from 2002-2014. Results Among the 148 IMD-cases notified from 01.01.2012-30.09.2013 in 18-59 year-old men we identified 13 MSM in 6 federal states: 11 serogroup C (MenC, all finetype C:P1.5-1,10-8:F3-6), 2 MenB. Interviews with 7 MSM revealed frequent meeting of multiple partners online or via mobile apps and illicit drug use as potential risk factors. MenC incidence was 13-fold higher in MSM than non-MSM. MenC isolates from 9/11 MSM had a novel fHbp allele 766. All C:P1.5-1,10-8:F3-6 strains from MSM versus 16/23 from non-MSM had intact aniA genes (p = 0.04). Although definitive evidence for transmission among MSM in epidemiological or spatiotemporal clusters in 2002-2014 was lacking, clusters were more frequent in men aged 20-49 years. Molecular analysis of C:P1.5-1,10-8:F3-6 strains revealed cases with intact aniA since 2007, mainly associated with fHbp361, fHbp766 and fHbp813, all involving one or more MSM. Conclusions MenC incidence was elevated in MSM during the study period. Multiple casual sexual contacts and illicit drug use were common in affected MSM. In all strains from MSM we detected an intact aniA gene coding for a nitrite reductase, which permits survival in microanaerobic environments and could play a role in meningococcal transmission in MSM through urogenital colonization. Furthermore, meningococcal transmission among MSM may be sustained over large areas and thus require modified spatiotemporal scanning algorithms for timely detection and control.}, language = {en} } @article{KlotzHigginsSchaubmaretal.2019, author = {Klotz, Peter and Higgins, Paul G. and Schaubmar, Andreas R. and Failing, Klaus and Leidner, Ursula and Seifert, Harald and Scheufen, Sandra and Semmler, Torsten and Ewers, Christa}, title = {Seasonal Occurrence and Carbapenem Susceptibility of Bovine Acinetobacter baumannii in Germany}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.00272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325927}, year = {2019}, abstract = {Acinetobacter baumannii is one of the leading causes of nosocomial infections in humans. To investigate its prevalence, distribution of sequence types (STs), and antimicrobial resistance in cattle, we sampled 422 cattle, including 280 dairy cows, 59 beef cattle, and 83 calves over a 14-month period. Metadata, such as the previous use of antimicrobial agents and feeding, were collected to identify putative determining factors. Bacterial isolates were identified via MALDI-TOF/MS and PCR, antimicrobial susceptibility was evaluated via VITEK2 and antibiotic gradient tests, resistance genes were identified by PCR. Overall, 15.6\% of the cattle harbored A. baumannii, predominantly in the nose (60.3\% of the A. baumannii isolates). It was more frequent in dairy cows (21.1\%) than in beef cattle (6.8\%) and calves (2.4\%). A seasonal occurrence was shown with a peak between May and August. The rate of occurrence of A. baumannii was correlated with a history of use of 3rd generation cephalosporins in the last 6 months prior to sampling Multilocus sequence typing (Pasteur scheme) revealed 83 STs among 126 unique isolates. Nine of the bovine STs have previously been implicated in human infections. Besides known intrinsic resistance of the species, the isolates did not show additional resistance to the antimicrobial substances tested, including carbapenems. Our data suggest that cattle are not a reservoir for nosocomial A. baumannii but carry a highly diverse population of this species. Nevertheless, some STs seem to be able to colonize both cattle and humans.}, language = {en} } @article{BarthHerrmannTappeetal.2012, author = {Barth, Thomas F. E. and Herrmann, Tobias S. and Tappe, Dennis and Stark, Lorenz and Gr{\"u}ner, Beate and Buttenschoen, Klaus and Hillenbrand, Andreas and Juchems, Markus and Henne-Bruns, Doris and Kern, Petra and Seitz, Hanns M. and M{\"o}ller, Peter and Rausch, Robert L. and Kern, Peter and Deplazes, Peter}, title = {Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0001877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135371}, pages = {e1877}, year = {2012}, abstract = {Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.}, language = {en} } @article{MachataSreekantapuramHuennigeretal.2021, author = {Machata, Silke and Sreekantapuram, Sravya and H{\"u}nniger, Kerstin and Kurzai, Oliver and Dunker, Christine and Schubert, Katja and Kr{\"u}ger, Wibke and Schulze-Richter, Bianca and Speth, Cornelia and Rambach, G{\"u}nter and Jacobsen, Ilse D.}, title = {Significant Differences in Host-Pathogen Interactions Between Murine and Human Whole Blood}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.565869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222575}, year = {2021}, abstract = {Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.}, language = {en} } @article{HeisigFrentzenBergmannetal.2011, author = {Heisig, Martin and Frentzen, Alexa and Bergmann, Birgit and Gentschev, Katharina Ivaylo and Hotz, Christian and Schoen, Christoph and Stritzker, Jochen and Fensterle, Joachim and Rapp, Ulf R. and Goebel, Werner}, title = {Specific antibody-receptor interactions trigger InlAB-independent uptake of Listeria monocytogenes into tumor cell lines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68705}, year = {2011}, abstract = {Background: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface. Results: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin®) or Cetuximab (Erbitux®) to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlABindependent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptormediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. Conclusions: Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.}, subject = {Listeria monocytogenes}, language = {en} } @article{LorsonRuoppNadernezhadetal.2020, author = {Lorson, Thomas and Ruopp, Matthias and Nadernezhad, Ali and Eiber, Julia and Vogel, Ulrich and Jungst, Tomasz and L{\"u}hmann, Tessa}, title = {Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component}, series = {ACS Omega}, volume = {5}, journal = {ACS Omega}, number = {12}, doi = {10.1021/acsomega.9b04096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229460}, pages = {6481-6486}, year = {2020}, abstract = {Bioprinting has emerged as a valuable threedimensional (3D) biomanufacturing method to fabricate complex hierarchical cell-containing constructs. Spanning from basic research to clinical translation, sterile starting materials are crucial. In this study, we present pharmacopeia compendial sterilization methods for the commonly used bioink component alginate. Autoclaving (sterilization in saturated steam) and sterile filtration followed by lyophilization as well as the pharmacopeia non-compendial method, ultraviolet (UV)-irradiation for disinfection, were assessed. The impact of the sterilization methods and their effects on physicochemical and rheological properties, bioprinting outcome, and sterilization efficiency of alginate were detailed. Only sterile filtration followed by lyophilization as the sterilization method retained alginate's physicochemical properties and bioprinting behavior while resulting in a sterile outcome. This set of methods provides a blueprint for the analysis of sterilization effects on the rheological and physicochemical pattern of bioink components and is easily adjustable for other polymers used in the field of biofabrication in the future.}, language = {en} } @article{KimMcDonaghDengetal.2019, author = {Kim, Brandon J. and McDonagh, Maura A. and Deng, Liwen and Gastfriend, Benjamin D. and Schubert-Unkmeir, Alexandra and Doran, Kelly S. and Shusta, Eric V.}, title = {Streptococcus agalactiae disrupts P-glycoprotein function in brain endothelial cells}, series = {Fluids and Barriers of the CNS}, volume = {16}, journal = {Fluids and Barriers of the CNS}, doi = {10.1186/s12987-019-0146-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201895}, pages = {26}, year = {2019}, abstract = {Bacterial meningitis is a serious life threatening infection of the CNS. To cause meningitis, blood-borne bacteria need to interact with and penetrate brain endothelial cells (BECs) that comprise the blood-brain barrier. BECs help maintain brain homeostasis and they possess an array of efflux transporters, such as P-glycoprotein (P-gp), that function to efflux potentially harmful compounds from the CNS back into the circulation. Oftentimes, efflux also serves to limit the brain uptake of therapeutic drugs, representing a major hurdle for CNS drug delivery. During meningitis, BEC barrier integrity is compromised; however, little is known about efflux transport perturbations during infection. Thus, understanding the impact of bacterial infection on P-gp function would be important for potential routes of therapeutic intervention. To this end, the meningeal bacterial pathogen, Streptococcus agalactiae, was found to inhibit P-gp activity in human induced pluripotent stem cell-derived BECs, and live bacteria were required for the observed inhibition. This observation was correlated to decreased P-gp expression both in vitro and during infection in vivo using a mouse model of bacterial meningitis. Given the impact of bacterial interactions on P-gp function, it will be important to incorporate these findings into analyses of drug delivery paradigms for bacterial infections of the CNS.}, language = {en} } @phdthesis{HagmanngebKischkies2016, author = {Hagmann [geb. Kischkies], Laura Violetta}, title = {Stringent response regulation and its impact on ex vivo survival in the commensal pathogen \(Neisseria\) \(meningitidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Neisseria meningitidis is a commensal bacterium which sometimes causes serious disease in humans. Recent studies in numerous human pathogenic bacteria have shown that the stringent response contributes to bacterial virulence. Therefore, this study analyzed the regulation of the stringent response in meningococci and in particular of RelA as well as its contribution to ex vivo fitness in a strain- and condition- dependent manner by using the carriage strain α522 and the hyperinvasive strain MC58 in different in vitro and ex vivo conditions. Growth experiments revealed that both wild-type strains were almost indistinguishable in their ex vivo phenotypes. However, quantitative real time PCR (qRT-PCR) found differences in the gene expression of relA between both strains. Furthermore, in contrast to the MC58 RelA mutant strain α522 deficient in RelA was unable to survive in human whole blood, although both strains showed the same ex vivo phenotypes in saliva and cerebrospinal fluid. Moreover, strain α522 was depended on a short non-coding AT-rich repeat element (ATRrelA) in the promoter region of relA to survive in human blood. Furthermore, cell culture experiments with human epithelial cells revealed that in both strains the deletion of relA resulted in a significantly decreased invasion rate while not significantly affecting adhesion. In order to better understand the conditional lethality of the relA deletion, computational and experimental analyses were carried out to unravel differences in amino acid biosynthetic pathways between both strains. Whereas strain MC58 is able to synthesize all 20 amino acids, strain α522 has an auxotrophy for cysteine and glutamine. In addition, the in vitro growth experiments found that RelA is required for growth in the absence of external amino acids in both strains. Furthermore, the mutant strain MC58 harboring an ATRrelA in its relA promoter region showed improved growth in minimal medium supplemented with L-cysteine and/or L-glutamine compared to the wild-type strain. Contrary, in strain α522 no differences between the wild-type and the ATRrelA deletion mutant were observed. Together this indicates that ATRrelA interferes with the complex regulatory interplay between the stringent response pathway and L-cysteine as well as L-glutamine metabolism. It further suggests that meningococcal virulence is linked to relA in a strain- and condition- depended manner. In conclusion, this work highlighted the role of the stringent response and of non-coding regulatory elements for bacterial virulence and indicates that virulence might be related to the way how meningococci accomplish growth within the host environments.}, subject = {Neisseria meningitidis}, language = {en} } @article{SchlegelPetersDooseetal.2019, author = {Schlegel, Jan and Peters, Simon and Doose, S{\"o}ren and Schubert-Unkmeir, Alexandra and Sauer, Markus}, title = {Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {194}, doi = {10.3389/fcell.2019.00194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201639}, year = {2019}, abstract = {Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.}, language = {en} } @article{FlemmingHankirErnestusetal.2020, author = {Flemming, S. and Hankir, M. and Ernestus, R.-I. and Seyfried, F. and Germer, C.-T. and Meybohm, P. and Wurmb, T. and Vogel, U. and Wiegering, A.}, title = {Surgery in times of COVID-19 — recommendations for hospital and patient management}, series = {Langenbeck's Archives of Surgery}, volume = {405}, journal = {Langenbeck's Archives of Surgery}, issn = {1435-2443}, doi = {10.1007/s00423-020-01888-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231766}, pages = {359-364}, year = {2020}, abstract = {Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties.}, language = {en} } @article{MoremiClausVogeletal.2017, author = {Moremi, Nyambura and Claus, Heike and Vogel, Ulrich and Mshana, Stephen E.}, title = {Surveillance of surgical site infections by Pseudomonas aeruginosa and strain characterization in Tanzanian hospitals does not provide proof for a role of hospital water plumbing systems in transmission}, series = {Antimicrobial Resistance and Infection Control}, volume = {6}, journal = {Antimicrobial Resistance and Infection Control}, number = {56}, doi = {10.1186/s13756-017-0216-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158168}, year = {2017}, abstract = {Background The role of hospital water systems in the development of Pseudomonas aeruginosa (P. aeruginosa) surgical site infections (SSIs) in low-income countries is barely studied. This study characterized P. aeruginosa isolates from patients and water in order to establish possible epidemiological links. Methods: Between December 2014 and September 2015, rectal and wound swabs, and water samples were collected in the frame of active surveillance for SSIs in the two Tanzanian hospitals. Typing of P. aeruginosa was done by multi-locus sequence typing. Results: Of 930 enrolled patients, 536 were followed up, of whom 78 (14.6\%, 95\% CI; 11.6-17.5) developed SSIs. P. aeruginosa was found in eight (14\%) of 57 investigated wounds. Of the 43 water sampling points, 29 were positive for P. aeruginosa. However, epidemiological links to wound infections were not confirmed. The P. aeruginosa carriage rate on admission was 0.9\% (8/930). Of the 363 patients re-screened upon discharge, four (1.1\%) possibly acquired P. aeruginosa during hospitalization. Wound infections of the three of the eight P. aeruginosa SSIs were caused by a strain of the same sequence type (ST) as the one from intestinal carriage. Isolates from patients were more resistant to antibiotics than water isolates. Conclusions: The P. aeruginosa SSI rate was low. There was no evidence for transmission from tap water. Not all P. aeruginosa SSI were proven to be endogenous, pointing to other routes of transmission.}, language = {en} } @article{SchubertKoziolCailliauetal.2014, author = {Schubert, Andreas and Koziol, Uriel and Cailliau, Katia and Vanderstraete, Mathieu and Dissous, Colette and Brehm, Klaus}, title = {Targeting Echinococcus multilocularis Stem Cells by Inhibition of the Polo-Like Kinase EmPlk1}, doi = {10.1371/journal.pntd.0002870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112806}, year = {2014}, abstract = {Background Alveolar echinococcosis (AE) is a life-threatening disease caused by larvae of the fox-tapeworm Echinococcus multilocularis. Crucial to AE pathology is continuous infiltrative growth of the parasite's metacestode stage, which is driven by a population of somatic stem cells, called germinative cells. Current anti-AE chemotherapy using benzimidazoles is ineffective in eliminating the germinative cell population, thus leading to remission of parasite growth upon therapy discontinuation. Methodology/Principal findings We herein describe the characterization of EmPlk1, encoded by the gene emplk1, which displays significant homologies to members of the Plk1 sub-family of Polo-like kinases that regulate mitosis in eukaryotic cells. We demonstrate germinative cell-specific expression of emplk1 by RT-PCR, transcriptomics, and in situ hybridization. We also show that EmPlk1 can induce germinal vesicle breakdown when heterologously expressed in Xenopus oocytes, indicating that it is an active kinase. This activity was significantly suppressed in presence of BI 2536, a Plk1 inhibitor that has been tested in clinical trials against cancer. Addition of BI 2536 at concentrations as low as 20 nM significantly blocked the formation of metacestode vesicles from cultivated Echinococcus germinative cells. Furthermore, low concentrations of BI 2536 eliminated the germinative cell population from mature metacestode vesicles in vitro, yielding parasite tissue that was no longer capable of proliferation. Conclusions/Significance We conclude that BI 2536 effectively inactivates E. multilocularis germinative cells in parasite larvae in vitro by direct inhibition of EmPlk1, thus inducing mitotic arrest and germinative cell killing. Since germinative cells are decisive for parasite proliferation and metastasis formation within the host, BI 2536 and related compounds are very promising compounds to complement benzimidazoles in AE chemotherapy. Author Summary The lethal disease AE is characterized by continuous and infiltrative growth of the metacestode larva of the tapeworm E. multilocularis within host organs. This cancer-like progression is exclusively driven by a population of parasite stem cells (germinative cells) that have to be eliminated for an effective cure of the disease. Current treatment options, using benzimidazoles, are parasitostatic only, and thus obviously not effective in germinative cell killing. We herein describe a novel, druggable parasite enzyme, EmPlk1, that specifically regulates germinative cell proliferation. We show that a compound, BI 2536, originally designed to inhibit the human ortholog of EmPlk1, can also inhibit the parasite protein at low doses. Furthermore, low doses of BI 2536 eliminated germinative cells from Echinococcus larvae in vitro and prevented parasite growth and development. We propose that BI 2536 and related compounds are promising drugs to complement current benzimidazole treatment for achieving parasite killing.}, language = {en} } @phdthesis{Gelmedin2008, author = {Gelmedin, Verena Magdalena}, title = {Targeting flatworm signaling cascades for the development of novel anthelminthic drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Echinococcus multilocularis verursacht die Alveol{\"a}re Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen M{\"o}glichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In F{\"a}llen operabler L{\"a}sionen erfordert die Resektion des Parasitengewebes {\"u}ber einen l{\"a}ngeren Zeitraum eine chemotherapeutische Unterst{\"u}tzung. Damit sind die jetzigen Behandlungsm{\"o}glichkeiten inad{\"a}quat und ben{\"o}tigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von Plattw{\"u}rmern analysiert, um potentielle Targets f{\"u}r neue therapeutische Ans{\"a}tze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-{\"a}hnliches MAPK Modul bildet. Ich konnte zudem verschiedene Einfl{\"u}sse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin {\"a}hnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivit{\"a}t der Echinokokkenzellen. Zus{\"a}tzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivit{\"a}t von Rezeptor-Tyrosin-Kinasen gerichtete Pr{\"a}parate, (3.) urspr{\"u}nglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden Gr{\"u}nden als vielversprechendes Target erwiesen. Aminos{\"a}uresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivit{\"a}t des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivit{\"a}t humaner p38 MAPK-\&\#945;. Zus{\"a}tzlich suggerieren die prominente Autophosphorylierungsaktivit{\"a}t von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivit{\"a}t von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abh{\"a}ngiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte S{\"a}ugerzellen nicht beeintr{\"a}chtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln w{\"a}hrend der Kultivierung von Echinococcus Prim{\"a}rzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-{\"a}hnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrit{\"a}t der Metazestodenvesikeln w{\"a}hrend der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. {\"A}hnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgef{\"u}hrten Inhibitoren. Zusammenfassend l{\"a}sst sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten f{\"u}hrten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein {\"U}berlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden k{\"o}nnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{Peters2021, author = {Peters, Simon}, title = {The impact of sphingolipids on \(Neisseria\) \(meningitidis\) and their role in meningococcal pathogenicity}, doi = {10.25972/OPUS-22623}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226233}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The obligate human pathogen Neisseria meningitidis is a major cause of sepsis and meningitis worldwide. It affects mainly toddlers and infants and is responsible for thousands of deaths each year. In this study, different aspects of the importance of sphingolipids in meningococcal pathogenicity were investigated. In a first step, the acid sphingomyelinase (ASM), which degrades membrane sphingomyelin to ceramide, was studied in the context of meningococcal infection. A requirement for ASM surface activity is its translocation from the lysosomal compartment to the cell surface, a process that is currently poorly understood. This study used various approaches, including classical invasion and adherence assays, flow cytometry, and classical and super resolution immunofluorescence microscopy (dSTORM). The results showed that the live, highly piliated N. meningitidis strain 8013/12 induced calcium-dependent ASM translocation in human brain microvascular endothelial cells (HBMEC). Furthermore, it promoted the formation of ceramide-rich platforms (CRPs). In addition, ASM translocation and CRP formation were observed after treating the cells with pili-enriched fractions derived from the same strain. The importance for N. meningitidis to utilize this pathway was shown by the inhibition of the calcium-dependent ASM translocation, which greatly decreased the number of invasive bacteria. I also investigated the importance of the glycosphingolipids GM1 and Gb3. The results showed that GM1, but not Gb3, plays an important role in the ability of N. meningitidis to invade HBMEC. By combining dSTORM imaging and microbiological approaches, we demonstrated that GM1 accumulated prolifically around bacteria during the infection, and that this interaction seemed essential for meningococcal invasion. Sphingolipids are not only known for their beneficial effect on pathogens. Sphingoid bases, including sphingosine, are known for their antimicrobial activity. In the last part of this study, a novel correlative light and electron microscopy approach was established in the combination with click chemistry to precisely localize azido-functionalized sphingolipids in N. meningitidis. The result showed a distinct concentration-dependent localization in either the outer membrane (low concentration) or accumulated in the cytosol (high concentration). This pattern was confirmed by mass spectrometry on separated membrane fractions. Our data provide a first insight into the underlying mechanism of antimicrobial sphingolipids.}, subject = {Neisseria meningitidis}, language = {en} } @phdthesis{Bauriedl2020, author = {Bauriedl, Saskia Corinna}, title = {The influence of riboregulation on fitness and virulence in Neisseria meningitidis}, doi = {10.25972/OPUS-19297}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Neisseria meningitidis (N. meningitidis) is a human commensal that occasionally causes life-threatening infections such as bacterial meningitis and septicemia. Despite experi-mental evidence that the expression of small non-coding RNAs (sRNAs) as well as the RNA chaperone Hfq affect meningococcal physiology, the impact of RNA-based regula-tion (riboregulation) on fitness and virulence in N. meningitidis is only poorly understood. Therefore, this study addressed these issues using a combination of high-throughput tech-nologies. A differential RNA-sequencing (dRNA-seq) approach was applied to produce a single-nucleotide resolution map of the primary transcriptome of N. meningitidis strain 8013. The dRNA-seq analysis predicted 1,625 transcriptional start sites including 65 putative sRNAs, of which 20 were further validated by northern blot analysis. By Hfq RNA im-munopreci-pitation sequencing a large Hfq-centered post-transcriptional regulatory net-work comprising 23 sRNAs and 401 potential mRNA targets was identified. Rifampicin stability assays demonstrated that Hfq binding confers enhanced stability on its associat-ed sRNAs. Based on these data, the interactions of two paralogous sRNAs and their cog-nate target mRNA prpB were validated in vivo as well as in vitro. Both sRNAs directly repress prpB encoding a methylisocitrate lyse which was previously shown to be involved in meningococcal colonization of the human nasopharynx. Besides the well-described RNA chaperone Hfq, FinO-domain proteins have recently been recognized as a widespread family of RNA-binding proteins (RBPs) with regulatory roles in diverse bacteria. They display an intriguing bandwidth of target sites, ranging from a single RNA pair as recognized by plasmid-encoded FinO to the global RNA regu-lons of enterobacterial ProQ proteins. To better understand the intrinsic targeting mode of this RBP family, in vivo targets of the minimal ProQ protein of N. meningitidis were de-termined. In vivo UV crosslinking with RNA deep sequencing (UV-CLIP) identified as-sociations of ProQ with 16 sRNAs and 166 mRNAs encoding a variety of biological functions and thus revealed ProQ as another global RBP in meningococci. It could be shown that meningococcal ProQ predominantly binds to highly structured RNA regions including DNA uptake sequences (DUS) and rho-independent transcription terminators and stabilizes many of its RNA targets as proved by rifampicin stability experiments. As expected from the large suite of ProQ-bound RNAs, proQ deletion globally affects both gene and protein expression in N. meningitidis, changing the expression levels of at least 244 mRNAs and 80 proteins. Phenotypic analyses suggested that ProQ promotes oxida-tive stress tolerance and UV damage repair capacity, both of which are required for full virulence of N. meningitidis. Together, this work uncovers the co-existence of two major post-transcriptional regulons, one governed by ProQ, the other by Hfq, in N. meningitidis. It further highlights the role of these distinct RBPs and its associated sRNAs to bacterial virulence and indicates that riboregulation is likely to contribute to the way how meningococci adapt to different host niches.}, subject = {Neisseria meningitidis}, language = {en} } @article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} } @article{HeidrichBauriedlBarquistetal.2017, author = {Heidrich, Nadja and Bauriedl, Saskia and Barquist, Lars and Li, Lei and Schoen, Christoph and Vogel, J{\"o}rg}, title = {The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gkx168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170828}, pages = {6147-6167}, year = {2017}, abstract = {Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of -35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.}, language = {en} } @phdthesis{Ye2004, author = {Ye, Fang}, title = {The role of DNA supercoiling in the coordinated regulation of gene expression in Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9878}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Summary Mechanisms of global gene regulation in bacteria are not well characterized yet. Changes in global or local supercoiling of chromosomal DNA are thought to play a role in global gene silencing and gene activation. In Helicobacter pylori, a bacterium with few dedicated transcriptional regulators, the structure of some promoters indicates a dependency on DNA topology. For example, the promoter of the major flagellar subunit gene flaA ({\´o}28-dependent) has a shorter spacing of 13 nucleotides (nt) in comparison to the consensus promoter (15 nt). Supercoiling changes might be a mechanism of gene-specific and global transcriptional regulation in this bacterium. The aim of this study was to elucidate, if changes in global supercoiling have an influence on global gene regulation in H. pylori, and on the temporal regulation of the flagellar biosynthesis pathway in this organism. In the present work, global DNA supercoiling in H. pylori was visualized for the first time, by determining the supercoiling state of plasmids under different growth conditions. Using this method, we showed that cellular supercoiling was clearly growth phase-dependent in H. pylori. Coinciding with increased supercoiling during the growth phases, transcription of the flaA gene was increased, while the transcription of a second {\´o}28-dependent gene with regular promoter spacing (HP0472) was reduced, supporting the hypothesis that growth phase-dependency of promoters might be mediated by changes of DNA topology. Supercoiling in H. pylori could be influenced in a reproducible fashion by inhibition of gyrase using novobiocin, which led to DNA relaxation and to a concomitant decrease of flaA transcript levels. Promoter spacer mutagenesis of the flaA promoter was performed. With flaA promoters of increased or reduced length, transcription of flaA was reduced, less susceptible to supercoiling changes, and, under specific conditions, inverted as compared to the wild type promoter. Transcriptional interdependence between the coupled topA-flaB genes and flaA was found by analysis of the flaA promoter mutants. Chromosomally linked gyrA-flgR, and topA-flaB genes were all dependent on supercoiling and coregulated with each other. Comprehensive transcript profiling (DNA microarrays) of wildtype H. pylori with and without novobiocin treatment identified a number of genes (10\% of total genes), including flagellin, virulence and housekeeping genes, which were strongly dependent on and appeared to be synchronized by supercoiling changes (transcriptional up- or downregulation). These findings indicate a tightly coupled temporal regulation of flagellar biogenesis and metabolism in H. pylori, dependent on global supercoiling. A specific group of genes was also regulated in H. pylori by overexpression of Topoisomerase I, as detected by genome-wide analysis (DNA microarray). The DNA-bending protein HU is thought to be responsible for influencing the negative supercoiling of DNA, through its ability to wrap DNA. HU is encoded by the hup single gene in H. pylori, and constitutively expressed during the whole growth curve. An H. pylori hup mutant was constructed. H. pylori cells lacking HU protein were viable, but exhibited a severe growth defect. Our data indicate that the lack of HU dramatically changes global DNA supercoiling, indicating an important function of HU in chromosome structuring in H. pylori. Transcriptome analyses were performed and demonstrated that a total of 66 genes were differentially transcribed upon hup deletion, which include virulence genes and many other cell functions. The data indicate that HU might act as further important global regulator in H. pylori. Increased gene expression of heat shock proteins and a decreased transcription of the urease gene cluster may indicate a co-ordinated response of H. pylori to changes of environmental conditions in its specific ecological niche, mediated by HU. After the whole genomic sequences of H. pylori strains 26695 and J99 were published, two ORFs (HP0116 and HP0440) were presumptively annotated as topoisomerase I orthologs. HP0116 is the functional H. pylori topoisomerase I (TopA). HP0440 (topA2) was found in only few (5 of 43) strains. Western blot analysis indicated that TopA2 is antigenically different from TopA. TopA2 is transcribed in H. pylori, but the protein must be functionally different from TopA, since it is lacking one functionally essential zinc finger motif, and was not able to functionally complement a TopA-deficient E. coli. Like topA, topA2 was also transcribed in a growth phase-dependent manner. We did not find a function of TopA2 in DNA structuring or topology, but, in the present study, we were able for the first time to establish a unique function for TopA2 in global gene regulation, by comprehensive transcriptome analysis (DNA microarray). Transcriptome analysis showed that a total of 46 genes were differentially regulated upon topA2 deletion, which included flagellar genes and urease genes. These results suggest that TopA2 might act as a novel important regulator of both flagellar biosynthesis and urease in H. pylori.}, subject = {Helicobacter pylori}, language = {en} } @phdthesis{vonSaintAndrevonArnim2007, author = {von Saint Andr{\´e} - von Arnim, Am{\´e}lie}, title = {The Role of Endosymbiotic Wolbachia Bacteria in the Pathogenesis of River Blindness}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31560}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Introduction: This study investigates the role of Wolbachia bacteria in the pathogenesis of O. volvulus keratitis in a mouse model. Wolbachia bacteria are essential symbionts of most filarial nematodes of importance for mankind. Methods: Using a mouse model for river blindness in which soluble extracts of filarial nematodes are injected in the corneal stroma, changes in stromal thickness and haze of the cornea are observed by in vivo confocal microscopy, followed by immunohistochemical staining for neutrophils and PECAM-1, as well as ELISA of corneal chemokines. Reactions to filarial extracts containing Wolbachia are compared to those without the endosymbiont. Results: The approach of characterizing Wolbachia's role in river blindness in this study is threefold. Firstly, Wolbachia-depleted extracts from doxycycline treated onchocerciasis patients led to a diminished inflammatory response in corneas of C57BL/6 mice compared to untreated, i.e. Wolbachia containing antigen. The decreased cell recruitment observed with doxycycline treated extracts involved neutrophils, but not eosinophils. This finding demonstrated that the presence of Wolbachia increases neutrophil recruitment. Secondly, extracts from Wolbachia-containing B. malayi revealed markedly more pathology than endosymbiont-free A. viteae antigen. This again pointed at the role of Wolbachia in development of disease. Thirdly, Toll-like Receptor 4 (TLR4) dependence was shown to exist for the inflammatory response to Wolbachia harboring O. volvulus antigen by looking at the corneal pathology in TLR4-mutant C3H/HeJ mice, compared to the wild-type C3H/HeN strain. Investigating further Wolbachia mediated mechanisms of neutrophil recruitment to the cornea, this study also showed that expression of the adhesion molecule PECAM-1 in limbal vessels, as well as upregulation of the CXC chemokines KC and MIP-2 were dependent on the presence of functional TLR4 and Wolbachia respectively. Conclusions: This study indicates that the innate immune system and Wolbachia endobacteria play an important role in the inflammatory response associated with the pathogenesis of onchocerca keratitis, suggesting a complete alteration in our understanding of the immunopathology of filariasis.}, subject = {Onchozerkose}, language = {en} } @article{MoremiClausVogeletal.2019, author = {Moremi, Nyambura and Claus, Heike and Vogel, Ulrich and Mshana, Stephen E.}, title = {The role of patients and healthcare workers Staphylococcus aureus nasal colonization in occurrence of surgical site infection among patients admitted in two centers in Tanzania}, series = {Antimicrobial Resistance \& Infection Control}, volume = {8}, journal = {Antimicrobial Resistance \& Infection Control}, doi = {10.1186/s13756-019-0554-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224185}, year = {2019}, abstract = {Background Colonization with Staphylococcus aureus has been identified as a risk for subsequent occurrence of infection. This study investigated the relationship between S. aureus colonization of patients and healthcare workers (HCWs), and subsequent surgical site infections (SSI). Methods Between December 2014 and September 2015, a total of 930 patients and 143 HCWs were enrolled from the Bugando Medical Centre and Sekou Toure hospital in Mwanza, Tanzania. On admission and discharge nasal swabs, with an additional of wound swab for those who developed SSI were collected from patients whereas HCWs were swabbed once. Identification and antimicrobial susceptibility testing were done by VITEK-MS and VITEK-2, respectively. Detection of Panton Valentine leukocidin (PVL) and mecA genes was done by PCR. S. aureus isolates were further characterized by spa typing and Multi-Locus Sequence Typing (MLST). Results Among 930 patients screened for S. aureus on admission, 129 (13.9\%) were positive of which 5.4\% (7/129) were methicillin-resistant S. aureus (MRSA). Amongst 363 patients rescreened on discharge, 301 patients had been tested negative on admission of whom 29 (9.6\%) turned positive after their hospital stay. Three (10.3\%) of the 29 acquired S. aureus were MRSA. Inducible Clindamycin resistance occurred more often among acquired S. aureus isolates than among isolates from admission [34.5\% (10/29) vs. 17.1\% (22/129), P = 0.018]. S. aureus contributed to 21.1\% (n = 12) of the 57 cases of investigated SSIs among 536 patients followed. Seven out of eight S. aureus carriage/infection pairs had the same spa and sequence types. The previously reported dominant PVL-positive ST88 MRSA strain with spa type t690 was detected in patients and HCW. Conclusion A significant proportion of patients acquired S. aureus during hospitalization. The finding of more than 90\% of S. aureus SSI to be of endogenous source underscores the need of improving infection prevention and control measures including screening and decolonization of high risk patients.}, language = {en} } @phdthesis{Fohmann2024, author = {Fohmann, Ingo}, title = {The Role of Sphingosine 1-phosphate and S1PR1-3 in the Pathophysiology of Meningococcal Meningitis}, doi = {10.25972/OPUS-36976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369764}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Neisseria meningitidis (N. meningitidis) is an obligate human pathogen which causes live-threatening sepsis and meningitis. The fatality rate after meningococcal infection is high and surviving patients often suffer from severe sequelae. To cause meningitis, N. meningitidis must overcome the endothelium of the blood-brain barrier. The bacterium achieves this through the interaction with endothelial surface receptors leading to alternations of the cellular metabolism and signaling, which lastly results in cellular uptake and barrier traversal of N. meningitidis. Sphingosine 1-phosphate (S1P) is a lipid mediator that belongs to the class of sphingolipids and regulates the integrity of the blood-brain barrier through the interaction with its cognate receptors S1P receptors 1-3 (S1PR1-3). In this study, high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) was used to generate a time-resolved picture of the sphingolipid metabolism in a brain endothelial cell line (hCMEC/D3) upon meningococcal infection. Among various changes, S1P was elevated in the cellular compartment as well as in the supernatant of infected hCMEC/D3s. Analysis of mRNA expression in infected hCMEC/D3s with quantitative real-time polymerase chain reaction (RT-qPCR) revealed that the increase in S1P could be attributed to the enhanced expression of the S1P-generating enzyme sphingosine kinase 1 (SphK1). Antibody-based detection of SphK1 protein or phosphorylation at SphK1 residue Serine 225 in hCMEC/D3 plasma membrane fractions via Western Blot revealed that N. meningitidis also induced SphK1 phospho-activation and recruitment to the plasma membrane. Importantly, recruitment of SphK1 to the plasma membrane increases the probability of substrate encounter, thus elevating SphK activity. Enhanced SphK activity was also reflected on a functional level, as detected by a commercially available ATP depletion assay used for measuring the enzymatic activity of SphK. Infection of hCMEC/D3 cells with pilus-deficient mutants resulted in a lower SphK activation compared to the N. meningitidis wild type strain. hCMEC/D3 treatment with pilus-enriched protein fractions showed SphK activation similar to the infection with living bacteria and could be ascribed to pilus interaction with the membrane-proximal domain of cellular surface receptor CD147. Inhibition of SphK1 or SphK2 through pre-treatment with specific inhibitors or RNA interference reduced uptake of N. meningitidis into hCMEC/D3 cells, as measured with Gentamicin protection assays. Released S1P induced the phospho-activation of epidermal growth factor receptor (EGFR) via S1PR2 activation, whose expression was also increasing during infection. Furthermore, S1PR2 blockage had a preventive effect on bacterial invasion into hCMEC/D3 cells. On the contrary, activation of S1PR1+3 also reduced bacterial uptake, indicating an opposing regulatory role of S1PR1+3 and S1PR2 during N. meningitidis uptake. Moreover, SphK2 inhibition prevented inflammatory cytokine expression as well as release of interleukin-8 after N. meningitidis infection. Taken together, this study demonstrates the central role of S1P and its cognate receptors S1PR1-3 in the pathophysiology of meningococcal meningitis.}, subject = {Blut-Hirn-Schranke}, language = {en} } @article{StreckForstervonHertzbergBoelchetal.2022, author = {Streck, Laura Elisa and Forster, Johannes and von Hertzberg-Boelch, Sebastian Philipp and Reichel, Thomas and Rudert, Maximilian and Rueckl, Kilian}, title = {The role of synovial fluid aspiration in shoulder joint infections}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, doi = {10.1186/s12891-022-05285-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300795}, year = {2022}, abstract = {Background Joint aspiration with analysis of synovial fluid white blood cell count (WBC) and microbiological culture is a widely established aspect in the diagnosis of shoulder joint infections (SJI). In case of a two stage revision for SJI, joint aspiration before re-/implantation of a total shoulder arthroplasty (TSA) was used to rule out persistent infection for years but its value is under debate. Shoulder specific data on all aspects is rare. The current study aims to answer the following research questions: Does joint aspiration have an insufficient predictive value in the diagnosis of SJI in (1) initial workup and (2) before definite arthroplasty with polymethylmethacrylate (PMMA)-Spacer in place? Methods This retrospective evaluation investigates 35 patients that were treated for SJI with a two staged implantation of a TSA after debridement and implantation of an PMMA-Spacer. Joint aspirations were performed preoperatively (PA) and before re-/implantation of the prosthesis while spacer was in place (interstage aspiration, IA). Samples were taken for microbiological culture and analysis of WBC. Sensitivity and specificity were calculated with reference to intraoperative microbiological samples. Receiver Operating Characteristic (ROC), Area-Under-Curve analysis (AUC) and calculation of the Youden index were performed to find optimum cut-off for WBC. Results The sensitivity of microbiological cultures from PA was 58.3\% and the specificity was 88.9\%. The mean WBC was 27,800 leucocytes/mm3 (range 400-96,300). The maximum Youden index (0.857) was a cut-off of 2600 leucocytes/mm3 with a sensitivity of 85.7\% and a specificity of 100.0\%. The sensitivity and specificity of IA were 0.0\% and 88.5\%, respectively. Conclusions Preoperative aspiration is likely to miss Cutibacteria spp. and CoNS and cannot rule out infection for sure. However, we recommend it for its advantages of targeted antibiotic therapy in case of germ identification. Empiric antibiotic therapy should cover Cutibacteria and CoNS even if aspiration showed negative microbiological cultures. In contrast, the diagnostic value of interstage aspiration does not qualify for its routine use.}, language = {en} } @phdthesis{Muenstermann2022, author = {M{\"u}nstermann, Marcel}, title = {The roles of the anaphylatoxin receptors during invasive disease as well as mucosal colonization caused by \(Neisseria\) \(meningitidis\)}, doi = {10.25972/OPUS-26975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269759}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The human specific gram-negative bacterium Neisseria meningitidis (Nme, meningococci) is a common colonizer of the upper respiratory tract. Upon becoming invasive, Nme can cause meningitis and life-threatening sepsis. The most important immune defense mechanism in invasive meningococcal disease (IMD) is the complement mediated killing of bacteria. The complement cascade is activated through different pathogen associated patterns and finally leads to the lysis of the bacteria by the membrane attack complex. In addition to the direct bacterial killing, the complement system is also an important player in different inflammatory processes. A hallmark of IMD is an overreaction of the immune system and the release of the potent anaphylatoxins C3a and C5a by the complement system is an important factor hereby. There are three anaphylatoxin receptors (ATRs), the C3aR, the C5aR1 and the C5aR2, capable of detecting these anaphylatoxins. It has already been shown that blocking the ATR C5aR1 strongly benefitted the outcome of IMD in a murine sepsis model. However, the roles of ATRs C3aR and C5aR2 in IMD are still unclear. This work aims to analyze the role of these ATRs in meningococcal sepsis and to identify possible underlying mechanisms. Furthermore, a possible involvement of the complement system, the ATRs and the type II CRISPR/Cas system on nasopharyngeal colonization is analyzed. In vivo depletion experiments showed that without neutrophils or monocytes/macrophages the complement system alone was not able to clear a low dose Nme infection, which highlights the importance of cellular components in IMD. Analyzing the role of the ATRs in knock-out mice with high dose Nme infections, revealed that the lack of C5aR2, like the lack of C5aR1, was beneficial for the outcome of meningococcal induced sepsis. In contrast, the lack of C3aR in knock-out mice was detrimental. The positive outcome associated with the C5aRs could be reproduced by using an antagonist against both C5aRs or an antagonist specifically against C5aR1 in WT mice. These findings are giving hope to future therapeutic applications. Next, a possible contribution of neutrophils to this positive outcome was analyzed. Absence of C5aR1 led to a decrease of degranulation by neutrophils in a murine whole blood model, while the other ATRs showed no effect. Neutrophil analysis in human whole blood, on the other hand, revealed a reduced oxidative burst and IL-8 secretion upon inhibition of all three ATRs. A functional difference between the C5aRs and the C3aR in neutrophils was observed in phagocytosis, which was reduced upon C3aR inhibition, but was unaltered with C5aR1 or C5aR2 inhibition. Possible underlying mechanisms in the phosphorylation of ERK1/2 were analyzed in bone marrow derived macrophages isolated from ATR knock-out mice. The later phosphorylation of ERK1/2 in macrophages without C5aR1 or C5aR2 expression might explain, why blocking the C5aRs is beneficial for the outcome of IMD in mice. In contrast to these findings, the colonization of the nasopharynx in huCEACAM 1 expressing mice by Nme did not seem to depend on the Complement system factors C3 and C5 nor the ATRs. Additionally, no difference in the colonization could be observed in this model using Nme mutants lacking different parts of the type 2 CRISPR/Cas system. Conclusively, this work highlights the importance of the complement system, the ATRs and the cellular components in IMD. Contrariwise, these factors did not play a role in the analyzed nasopharyngeal infection model. The beneficial effects of C5aR1 and C5aR2 lack/inhibition in IMD might have medicinal applications, which could support the standard therapies of IMD in the future.}, subject = {Anaphylatoxine}, language = {en} } @article{BrehmKoziolRauschendorferetal.2014, author = {Brehm, Klaus and Koziol, Uriel and Rauschendorfer, Theresa and Rodr{\´i}guez, Luis Zanon and Krohne, Georg}, title = {The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis}, doi = {10.1186/2041-9139-5-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110315}, year = {2014}, abstract = {Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.}, language = {en} } @article{MottolaRamirezZavalaHuenningeretal.2021, author = {Mottola, Austin and Ram{\´i}rez-Zavala, Bernardo and H{\"u}nninger, Kerstin and Kurzai, Oliver and Morschh{\"a}user, Joachim}, title = {The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {2}, doi = {10.1111/mmi.14727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259583}, pages = {483-497}, year = {2021}, abstract = {The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.}, language = {en} } @article{AmpattuHagmannLiangetal.2017, author = {Ampattu, Biju Joseph and Hagmann, Laura and Liang, Chunguang and Dittrich, Marcus and Schl{\"u}ter, Andreas and Blom, Jochen and Krol, Elizaveta and Goesmann, Alexander and Becker, Anke and Dandekar, Thomas and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, number = {282}, doi = {10.1186/s12864-017-3616-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157534}, year = {2017}, abstract = {Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.}, language = {en} } @article{TappeMeyerOesterleinetal.2011, author = {Tappe, Dennis and Meyer, Michael and Oesterlein, Anett and Jaye, Assan and Frosch, Matthias and Schoen, Christoph and Pantchev, Nikola}, title = {Transmission of Armillifer armillatus Ova at Snake Farm, The Gambia, West Africa}, series = {Emerging Infectious Diseases}, volume = {17}, journal = {Emerging Infectious Diseases}, number = {2}, doi = {10.3201/eid1702.101118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142804}, pages = {251-254}, year = {2011}, abstract = {Visceral pentastomiasis caused by Armillifer armillatus larvae was diagnosed in 2 dogs in The Gambia. Parasites were subjected to PCR; phylogenetic analysis confirmed relatedness with branchiurans/crustaceans. Our investigation highlights transmission of infective A. armillatus ova to dogs and, by serologic evidence, also to 1 human, demonstrating a public health concern.}, language = {en} } @phdthesis{Swiderek2005, author = {Swiderek, Halina}, title = {Typing and genome comparison of Neisseria meningitidis by DNA-microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In the present thesis, two projects on the use of microarray technology for molecular epidemiology of Neisseria meningitidis have been followed. The first one evaluated microarrays based on polymorphism-directed oligonucleotide design for typing of N. meningitidis adopting the multilocus sequence typing (MLST) concept. The number of oligonucleotides needed to cover all known polymorphisms was much lower compared to the number needed if a tiling strategy would have been chosen. Initial experiments using oligonucleotides 28-32 nucleotides in length, revealed that the applied hybridisation protocols were highly specific. However, despite of several optimisation steps, the rate of misidentification of oligonucleotides remained >1.8\% in consecutive validation experiments using arrays representing the genetic diversity at three MLST loci. This finding led to the assumption that the high density of polymorphic sites and extensive GC-content variations at N. meningitidis MLST loci hindered the successful implementation of MLST microarrays based on polymorphism-directed oligonucleotide design. In the 1980s, the ET-15 clone emerged within the ST-11 complex of N. meningitidis. This new clone was associated with severe meningococcal disease and outbreaks world-wide. Therefore, the goal of the second project was to identify genetic differences between ET-15 strains and other ST-11 strains using whole genome microarray technology. Three genes encoding hypothetical proteins were identified to be present in all ET-15 strains but absent in other ST-11 strains. This finding together with unpublished observation from our group suggested that several genome alterations occurred before the clonal expansion of the ET-15 clone started. The role that these three genes play in the pathogenicity of the ET-15 clone is unclear. The genome comparisons revealed furthermore that studies of the ET-15 clone displayed approximately two-fold less gene content variation than ST-11 strains not belonging to the ET-15 clone. This finding is in accordance with the recent emergence and clonal expansion of the ET-15 variant.}, subject = {Neisseria meningitis}, language = {en} } @article{SchreiberLohrBaltesetal.2023, author = {Schreiber, Laura M. and Lohr, David and Baltes, Steffen and Vogel, Ulrich and Elabyad, Ibrahim A. and Bille, Maya and Reiter, Theresa and Kosmala, Aleksander and Gassenmaier, Tobias and Stefanescu, Maria R. and Kollmann, Alena and Aures, Julia and Schnitter, Florian and Pali, Mihaela and Ueda, Yuichiro and Williams, Tatiana and Christa, Martin and Hofmann, Ulrich and Bauer, Wolfgang and Gerull, Brenda and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Terekhov, Maxim}, title = {Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research}, series = {Frontiers in Cardiovascular Medicine}, volume = {10}, journal = {Frontiers in Cardiovascular Medicine}, issn = {2297-055X}, doi = {10.3389/fcvm.2023.1068390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317398}, year = {2023}, abstract = {A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.}, language = {en} } @article{WaltherWagnerKurzai2019, author = {Walther, Grit and Wagner, Lysett and Kurzai, Oliver}, title = {Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193081}, year = {2019}, abstract = {Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.}, language = {en} } @article{GlaserSilwedelFehrholzetal.2017, author = {Glaser, Kirsten and Silwedel, Christine and Fehrholz, Markus and Waaga-Gasser, Ana M. and Henrich, Birgit and Claus, Heike and Speer, Christian P.}, title = {Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {7}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {484}, doi = {10.3389/fcimb.2017.00484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169958}, year = {2017}, abstract = {Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p < 0.01 and p < 0.05). Intracellular protein expression of TNF-α, IL-1β and IL-8 in Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p < 0.05). Remarkably, ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p < 0.01, vs. LPS). In contrast to LPS, both isolates induced TLR2 mRNA in neonatal and adult cells (p < 0.001 and p < 0.05) and suppressed TLR4 mRNA in adult monocytes (p < 0.05). Upon co-stimulation, Uu8 and Up3 inhibited LPS-induced intracellular IL-1β (p < 0.001 and p < 0.05) and IL-8 in adult monocytes (p < 0.01), while LPS-induced neonatal cytokines were maintained or aggravated (p < 0.05). Conclusion: Our data demonstrate a considerable pro-inflammatory capacity of Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of TLR2 and TLR4 expression may shape host susceptibility to inflammation.}, language = {en} } @article{SilwedelSpeerHaarmannetal.2019, author = {Silwedel, Christine and Speer, Christian P. and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Schlegel, Nicolas and Glaser, Kirsten}, title = {Ureaplasma species modulate cytokine and chemokine responses in human brain microvascular endothelial cells}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {14}, issn = {1422-0067}, doi = {10.3390/ijms20143583}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201848}, year = {2019}, abstract = {Ureaplasma species are common colonizers of the adult genitourinary tract and often considered as low-virulence commensals. Intraamniotic Ureaplasma infections, however, facilitate chorioamnionitis and preterm birth, and cases of Ureaplasma-induced neonatal sepsis, pneumonia, and meningitis raise a growing awareness of their clinical relevance. In vitro studies are scarce but demonstrate distinct Ureaplasma-driven impacts on immune mechanisms. The current study addressed cytokine and chemokine responses upon exposure of native or lipopolysaccharide (LPS) co-stimulated human brain microvascular endothelial cells (HBMEC) to Ureaplasma urealyticum or U. parvum, using qRT-PCR, RNA sequencing, multi-analyte immunoassay, and flow cytometry. Ureaplasma exposure in native HBMEC reduced monocyte chemoattractant protein (MCP)-3 mRNA expression (p < 0.01, vs. broth). In co-stimulated HBMEC, Ureaplasma spp. attenuated LPS-evoked mRNA responses for C-X-C chemokine ligand 5, MCP-1, and MCP-3 (p < 0.05, vs. LPS) and mitigated LPS-driven interleukin (IL)-1α protein secretion, as well as IL-8 mRNA and protein responses (p < 0.05). Furthermore, Ureaplasma isolates increased C-X-C chemokine receptor 4 mRNA levels in native and LPS co-stimulated HBMEC (p < 0.05). The presented results may imply immunomodulatory capacities of Ureaplasma spp. which may ultimately promote chronic colonization and long-term neuroinflammation.}, language = {en} } @article{EliasSchoulsvandePoletal.2010, author = {Elias, Johannes and Schouls, Leo M. and van de Pol, Ingrid and Keijzers, Wendy C. and Martin, Diana R. and Glennie, Anne and Oster, Philipp and Frosch, Matthias and Vogel, Ulrich and van der Ende, Arie}, title = {Vaccine Preventability of Meningococcal Clone, Greater Aachen Region, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68083}, year = {2010}, abstract = {No abstract available}, subject = {IMD}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} }