@article{KrausHeiberVaethetal.2016, author = {Kraus, Hannes and Heiber, Michael C. and V{\"a}th, Stefan and Kern, Julia and Deibel, Carsten and Sperlich, Andreas and Dyakonov, Vladimir}, title = {Analysis of Triplet Exciton Loss Pathways in PTB7:PC\(_{71}\)BM Bulk Heterojunction Solar Cells}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {29158}, doi = {10.1038/srep29158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147413}, year = {2016}, abstract = {A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC\(_{71}\)BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC\(_{71}\)BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC\(_{71}\)BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.}, language = {en} } @article{SperlichAuthDyakonov2022, author = {Sperlich, Andreas and Auth, Michael and Dyakonov, Vladimir}, title = {Charge transfer in ternary solar cells employing two fullerene derivatives: where do electrons go?}, series = {Israel Journal of Chemistry}, volume = {62}, journal = {Israel Journal of Chemistry}, number = {7-8}, doi = {10.1002/ijch.202100064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257506}, year = {2022}, abstract = {Earlier reports demonstrated that ternary organic solar cells (OSC) made of donor polymers (D) blended with different mixtures of fullerene acceptors (A : A) performed very similarly. This finding is surprising, as the corresponding fullerene LUMO levels are slightly different, which might result in decisive differences in the charge transfer step. We investigate ternary OSC (D : A : A) made of the donor polymer P3HT with stoichiometric mixtures of different fullerene derivatives, PC\(_{60}\)BM : PC\(_{70}\)BM and PC\(_{70}\)BM : IC\(_{60}\)BA, respectively. Using quantitative electron paramagnetic resonance (EPR) we can distinguish between positive and negative polarons, localized on the specific molecules. We found that after the initial charge transfer step, the electrons are re-distributed over two nearby acceptors in agreement with their stoichiometry and their relative LUMO energy difference. Remarkably, the measured ΔLUMO differences in fullerene mixtures are reduced by an order of magnitude compared to that of the pristine materials, i. e., below 1 meV for PC\(_{60}\)BM : PC\(_{70}\)BM and (20±5) meV for PC\(_{70}\)BM : IC\(_{60}\)BA. Furthermore, we found that this reduced ΔLUMO explains the shift in open circuit voltage for D : A : A organic solar cells. We attribute these findings to hybridization, leading to an effective fullerene LUMO. Consequently, multi-acceptor blends are indeed a viable option for photodetectors and solar cells, as they combine the best electron acceptor and light absorbing properties.}, language = {en} } @phdthesis{Sperlich2013, author = {Sperlich, Andreas}, title = {Electron Paramagnetic Resonance Spectroscopy of Conjugated Polymers and Fullerenes for Organic Photovoltaics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-81244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In the presented thesis, the various excited states encountered in conjugated organic semiconductors are investigated with respect to their utilization in organic thin-film solar cells. Most of these states are spin-baring and can therefore be addressed by means of magnetic resonance spectroscopy. The primary singlet excitation (spin 0), as well as positive and negative polaronic charge carriers (spin 1/2) are discussed. Additionally, triplet excitons (spin 1) and charge transfer complexes are examined, focussing on their differing spin-spin interaction strength. For the investigation of these spin-baring states especially methods of electron paramagnetic resonance (EPR) are best suited. Therefore according experimental methods were implemented in the course of this work to study conjugated polymers, fullerenes and their blends with continuous wave as well as time-resolved EPR and optically detected magnetic resonance.}, subject = {Organische Solarzelle}, language = {en} } @article{WeissenseelGottschollBoennighausenetal.2021, author = {Weissenseel, Sebastian and Gottscholl, Andreas and B{\"o}nnighausen, Rebecca and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {47}, doi = {10.1126/sciadv.abj9961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265508}, year = {2021}, abstract = {Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.}, language = {en} } @article{AstakhovKrausSoltamovetal.2014, author = {Astakhov, Georgy V. and Kraus, Hannes and Soltamov, V. A. and Fuchs, Franziska and Simin, Dimitrij and Sperlich, Andreas and Baranov, P. G. and Dyakonov, Vladimir}, title = {Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide}, doi = {10.1038/srep05303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113025}, year = {2014}, abstract = {Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of -1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response.}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @article{GottschollDiezSoltamovetal.2021, author = {Gottscholl, Andreas and Diez, Matthias and Soltamov, Victor and Kasper, Christian and Krauße, Dominik and Sperlich, Andreas and Kianinia, Mehran and Bradac, Carlo and Aharonovich, Igor and Dyakonov, Vladimir}, title = {Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24725-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261581}, year = {2021}, abstract = {Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^-\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^-\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials.}, language = {en} } @article{BunzmannKrugmannWeissenseeletal.2021, author = {Bunzmann, Nikolai and Krugmann, Benjamin and Weissenseel, Sebastian and Kudriashova, Liudmila and Ivaniuk, Khrystyna and Stakhira, Pavlo and Cherpak, Vladyslav and Chapran, Marian and Grybauskaite-Kaminskiene, Gintare and Grazulevicius, Juozas Vidas and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Spin- and Voltage-Dependent Emission from Intra- and Intermolecular TADF OLEDs}, series = {Advanced Electronic Materials}, volume = {7}, journal = {Advanced Electronic Materials}, number = {3}, doi = {10.1002/aelm.202000702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224434}, year = {2021}, abstract = {Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′-(9H,9′H-[3,3′-bicarbazole]-9,9′-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). Orange emitting exciplex-based OLEDs additionally generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra- and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.}, language = {en} } @article{GottschollWagenhoeferKlimmeretal.2022, author = {Gottscholl, Andreas and Wagenh{\"o}fer, Maximilian and Klimmer, Manuel and Scherbel, Selina and Kasper, Christian and Baianov, Valentin and Astakhov, Georgy V. and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Superradiance of spin defects in silicon carbide for maser applications}, series = {Frontiers in Photonics}, volume = {3}, journal = {Frontiers in Photonics}, issn = {2673-6853}, doi = {10.3389/fphot.2022.886354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284698}, year = {2022}, abstract = {Masers as telecommunication amplifiers have been known for decades, yet their application is strongly limited due to extreme operating conditions requiring vacuum techniques and cryogenic temperatures. Recently, a new generation of masers has been invented based on optically pumped spin states in pentacene and diamond. In this study, we pave the way for masers based on spin S = 3/2 silicon vacancy (V\(_{Si}\)) defects in silicon carbide (SiC) to overcome the microwave generation threshold and discuss the advantages of this highly developed spin hosting material. To achieve population inversion, we optically pump the V\(_{Si}\) into their m\(_S\) = ±1/2 spin sub-states and additionally tune the Zeeman energy splitting by applying an external magnetic field. In this way, the prerequisites for stimulated emission by means of resonant microwaves in the 10 GHz range are fulfilled. On the way to realising a maser, we were able to systematically solve a series of subtasks that improved the underlying relevant physical parameters of the SiC samples. Among others, we investigated the pump efficiency as a function of the optical excitation wavelength and the angle between the magnetic field and the defect symmetry axis in order to boost the population inversion factor, a key figure of merit for the targeted microwave oscillator. Furthermore, we developed a high-Q sapphire microwave resonator (Q ≈ 10\(^4\)-10\(^5\)) with which we find superradiant stimulated microwave emission. In summary, SiC with optimized spin defect density and thus spin relaxation rates is well on its way of becoming a suitable maser gain material with wide-ranging applications.}, language = {en} } @article{GrueneLondiGillettetal.2023, author = {Gr{\"u}ne, Jeannine and Londi, Giacomo and Gillett, Alexander J. and St{\"a}hly, Basil and Lulei, Sebastian and Kotova, Maria and Olivier, Yoann and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Triplet Excitons and Associated Efficiency-Limiting Pathways in Organic Solar Cell Blends Based on (Non-) Halogenated PBDB-T and Y-Series}, series = {Advanced Functional Materials}, volume = {33}, journal = {Advanced Functional Materials}, number = {12}, doi = {10.1002/adfm.202212640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312164}, year = {2023}, abstract = {The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non-fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20\%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low-lying states that are responsible for non-radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin-sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum-chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB-T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non-geminate hole back transfer and, in blends with halogenated donors, also by spin-orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.}, language = {en} }