@article{ScheurerBrandsElMeseryetal.2019, author = {Scheurer, Mario Joachim Johannes and Brands, Roman Camillus and El-Mesery, Mohamed and Hartmann, Stefan and M{\"u}ller-Richter, Urs Dietmar Achim and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {The selection of NFκB inhibitors to block inflammation and induce sensitisation to FasL-induced apoptosis in HNSCC cell lines is critical for their use as a prospective cancer therapy}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms20061306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201524}, year = {2019}, abstract = {Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors — Cortisol, MLN4924, QNZ and TPCA1 — on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted.}, language = {en} } @article{WuenschRiesHeinzelmannetal.2023, author = {W{\"u}nsch, Anna Chiara and Ries, Elena and Heinzelmann, Sina and Frabschka, Andrea and Wagner, Peter Christoph and Rauch, Theresa and Koderer, Corinna and El-Mesery, Mohamed and Volland, Julian Manuel and K{\"u}bler, Alexander Christian and Hartmann, Stefan and Seher, Axel}, title = {Metabolic silencing via methionine-based amino acid restriction in head and neck cancer}, series = {Current Issues in Molecular Biology}, volume = {45}, journal = {Current Issues in Molecular Biology}, number = {6}, issn = {1467-3045}, doi = {10.3390/cimb45060289}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319257}, pages = {4557 -- 4573}, year = {2023}, abstract = {In recent years, various forms of caloric restriction (CR) and amino acid or protein restriction (AAR or PR) have shown not only success in preventing age-associated diseases, such as type II diabetes and cardiovascular diseases, but also potential for cancer therapy. These strategies not only reprogram metabolism to low-energy metabolism (LEM), which is disadvantageous for neoplastic cells, but also significantly inhibit proliferation. Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumour types, with over 600,000 new cases diagnosed annually worldwide. With a 5-year survival rate of approximately 55\%, the poor prognosis has not improved despite extensive research and new adjuvant therapies. Therefore, for the first time, we analysed the potential of methionine restriction (MetR) in selected HNSCC cell lines. We investigated the influence of MetR on cell proliferation and vitality, the compensation for MetR by homocysteine, the gene regulation of different amino acid transporters, and the influence of cisplatin on cell proliferation in different HNSCC cell lines.}, language = {en} }