@phdthesis{Nguyen2012, author = {Nguyen, Hoang Duong}, title = {Vaccinia virus mediated expression of human erythropoietin in colonized human tumor xenografts results in faster tumor regression and increased red blood cell biogenesis in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Cancer-related anemia is prevalent in cancer patients. Anemia negatively affects normal mental and physical function capacity with common symptoms s like fatigue, headache, or depression. Human erythropoietin (hEPO), a glycoprotein hormone regulating red blood cell formation, is approved for the treatment of cancer-related anemia. It has shown benefits in correcting anemia, and subsequently improving health-related quality of life and/or enhancing radio-, and chemotherapy. Several recent clinical trials have suggested that recombinant hEPO (rhEPO) may promote tumor growth that raises the questions concerning the safety of using rhEPO for cancer treatment. However in others, such effects were not indicated. As of today, the direct functional effect of rhEPO in tumor models remains controversial and needs to be further analyzed. Based on the GLV-1h68 backbone, the hEPO-expressing recombinant VACV strains (EPO-VACVs) GLV-1h210, GLV-1h211, GLV-1h212 and GLV-1h213 were generated by replacing the lacZ expression cassette at the J2R locus with hEPO under the control of different vaccinia promoters p7.5, pSE, pSEL, pSL, respectively. Also, GLV-1h209 was generated, which is similar to GLV-1h210 but expresses a mutated non-functinal EPO (R103A). The EPO-VACV strains were characterized for their oncolytic efficacy in lung (A549) cancer cells in culture and tumor xenografts. Concomitantly, the effects of locally expressed hEPO in tumors on virus replication, host immune infiltration, tumor vascularization and tumor growth were also evaluated. As expected, EPO-VACVs enhanced red blood cell (RBC) formation in xenograft model. The number of RBCs and hemoglobin (Hb) levels were significantly increased in EPO-VACVs-treated mice compared to GLV-1h68-treated or untreated control mice. However, the mean size of RBC or Hb content per RBC remained normal. Furthermore, over-expression of hEPO did not significantly affect numbers of lymphocytes, monocytes, leucocytes or platelets in the peripheral blood stream. The expression of hEPO in colonized tumors of mice treated with EPO-VACVs was demonstrated by immunohistological staining. Interestingly, there were 9 - 10 hEPO isoforms detected either in tumors, cells, or supernatant, while 3-4 basic isoforms were missing in blood serum, where only six hEPO isoforms were found. Tumor-bearing mice after treatment with EPO-VACVs showed enhanced tumor regression compared to GLV-1h68. The virus titers in tumors in EPO-VACVs-treated mice were 3-4 fold higher compared to GLV-1h68-treated mice. Nevertheless, no significant difference in virus titers among EPO-VACVs was found. The blood vessels in tumors were significantly enlarged while the blood vessel density remained unchanged compared to the GLV-1h68 treated mice, indicating that hEPO did not affect endothelial cell proliferation in this model. Meanwhile, rhEPO (Epoetin alfa) alone or in combination with GLV-1h68 did not show any signs of enhanced tumor growth when compared to untreated controls and GLV-1h68 groups, while doses used were clinical relevant (500 U/kg). These findings suggested that hEPO did not promote angiogenesis or tumor growth in the A549 tumor xenograft model. Human EPO has been reported to function as an immune modulator. In this study, however, we did not find any involvement of hEPO in immune cytokine and chemokine expression or innate immune cell infiltration (leucocytes, B cells, macrophages and dendritic cells) into infected tumors. The degree of immune infiltration and cytokine expression was directly correlated to the number of virus particles. Increased virus replication, led to more recruited immune cells and secreted cytokines/chemokines. It was proposed that tumor regression was at least partially mediated through activation of innate immune mechanisms. In conclusion, the novel EPO-VACVs were shown to significantly increase the number of RBCs, Hb levels, and virus replication in tumors as well as to enhance tumor regression in the A549 tumor xenograft model. Moreover, locally expressed hEPO did not promote tumor angiogenesis, tumor growth, and immune infiltration but was shown to causing enlarged tumoral microvessels which facilitated virus spreading. It is conceivable that in a possible clinical application, anemic cancer patients could benefit from the EPO-VACVs, where they could serve as "wellness pills" to decrease anemic symptoms, while simultaneously destroying tumors.}, subject = {Erythropoietin}, language = {en} } @phdthesis{Luetkenhaus2010, author = {L{\"u}tkenhaus, Katharina}, title = {Tumour development in Raf-driven cancer mouse models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Metastasis is the cause of death in 90\% of cancer-related deaths in men. Melanoma and Non-Small-Cell Lung Cancer (NSCLC) are both tumour types with poor prognosis, lacking appropriate therapeutic possibilities, not least because of their high rate of metastasis. Thus understanding the process of metastasis might unravel therapeutic targets for developing further therapeutic strategies. The generation of a transgenic mouse model expressing B-RafV600E in melanocytes, a mutation that is found in about 60\% of all melanoma, would result in an ideal tool to study melanoma progression and metastasis. In this work, a doxycycline-inducible system was constructed for expression of B-RafV600E and transgenic animals were generated, but the expression system has to be improved, since this strategy didn't give rise to any viable, transgene carrying mice. Furthermore, since it was shown in the work of others that the metastatic behavior of tumour cell lines could be reversed by an embryonic microenvironment and the influence of a tumourigenic microenvironment on melanocytes lead to the acquisition of tumour cell-like characteristics, the question arose, whether B-Raf is as important in melanocyte development as it is in melanoma progression. In this work, the embryonal melanocyte development in B-Raf-deficient and wildtype mouse embryos was examined and there were no differences observed in the localization and number of neural crest stem cells as well as in the localization of the dopachrome-tautomerase positive melanoblasts in the embryos and in cultured neural tube explants. The expression of oncogenic C-Raf in lung epithelial cells has yielded a model for NSCLC giving rise to adenomas lacking spontaneous progression or metastasis. The co-expression of c-Myc in the same cells accelerates the tumour development and gives rise to liver and lymphnode metastases. The expression of c-Myc alone in lung epithelial cells leads to late tumour development with incomplete penetrance. A mutation screen in this work resulted in the observation that a secondary mutation in KRas or LKB1 is necessary for tumour formation in the c-Myc single transgenic animals and suggested metastasis as an early event, since the corresponding metastases of the mutation-prone primary lung tumours were negative for the observed mutations. Furthermore, in this work it was shown that the expression of chicken c-Myc in a non-metastatic NSCLC cell line leads to metastatic clones, showing that c-Myc is sufficient to induce metastasis. Additionally a panel of metastasis markers was identified, that might serve as diagnostic markers in the future.}, subject = {Raf }, language = {en} } @article{SzalayWeibelHofmannetal.2013, author = {Szalay, Aladar A and Weibel, Stephanie and Hofmann, Elisabeth and Basse-Luesebrink, Thomas Christian and Donat, Ulrike and Seubert, Carolin and Adelfinger, Marion and Gnamlin, Prisca and Kober, Christina and Frentzen, Alexa and Gentschev, Ivaylo and Jakob, Peter Michael}, title = {Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer}, series = {Journal of Translational Medicine}, journal = {Journal of Translational Medicine}, doi = {doi:10.1186/1479-5876-11-106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96016}, year = {2013}, abstract = {Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{Iltzsche2017, author = {Iltzsche, Fabian}, title = {The Role of DREAM/MMB-mediated mitotic gene expression downstream of mutated K-Ras in lung cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The evolutionary conserved Myb-MuvB (MMB) multiprotein complex has an essential role in transcriptional activation of mitotic genes. MMB target genes as well as the MMB associated transcription factor B-Myb and FoxM1 are highly expressed in a range of different cancer types. The elevated expression of these genes correlates with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. Although MMB has been extensively characterized biochemically, the requirement for MMB to tumorigenesis in vivo remains largely unknown and has not been tested directly so far. In this study, conditional knockout of the MMB core member Lin9 inhibits tumor formation in vivo in a mouse model of lung cancer driven by oncogenic K-Ras and loss of p53. The incomplete recombination observed within tumors points towards an enormous selection pressure against the complete loss of Lin9. RNA interference (RNAi)-mediated depletion of Lin9 or the MMB associated subunit B-Myb provides evidence that MMB is required for the expression of mitotic genes in lung cancer cells. Moreover, it was demonstrated that proliferation of lung cancer cells strongly depends on MMB. Furthermore, in this study, the relationship of MMB to the p53 tumor suppressor was investigated in a primary lung cancer cell line with restorable p53 function. Expression analysis revealed that mitotic genes are downregulated after p53 re-expression. Moreover, activation of p53 induces formation of the repressive DREAM complex and results in enrichment of DREAM at mitotic gene promoters. Conversely, MMB is displaced at these promoters. Based on these findings the following model is proposed: In p53-negative cells, mitogenic stimuli foster the switch from DREAM to MMB. Thus, mitotic genes are overexpressed and may promote chromosomal instability and tumorigenesis. This study provides evidence that MMB contributes to the upregulation of G2/M phase-specific genes in p53-negative cells and suggests that inhibition of MMB (or its target genes) might be a strategy for treatment of lung cancer.}, subject = {Nicht-kleinzelliges Bronchialkarzinom (NSCLC)}, language = {en} } @phdthesis{Zanucco2011, author = {Zanucco, Emanuele}, title = {Role of oncogenic and wild type B-RAF in mouse lung tumor models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Von Wachstumsfaktoren regulierte Signalkaskaden sind Schl{\"u}sselelemente in der Gewebeentwicklung und Geweberegeneration. Eine Deregulation dieser Kaskaden f{\"u}hrt zu Entwicklungsst{\"o}rungen und neoplastischen Krankheiten. F{\"u}r viele humane Krebsformen sind aktivierende Mutationen der Kinasen der RAF Familie verantwortlich. Das erste Projekt dieser Doktorarbeit fokussiert auf der Rolle des B-RAF V600E, welches als eine der am h{\"a}ufigsten vorkommenden Mutantionen in humanen Krebszellen identifiziert worden ist. Um die onkogene Funktion des B-RAF V600E zu untersuchen, haben wir transgene Mauslinien hergestellt, welche das aktivierte Onkogen spezifisch in alveolaren Lungenepithelzellen des Typ II exprimieren. Konstitutive Expression des B-RAF V600E f{\"u}hrte zu einer abnormen alveolaren Epithelzellbildung und zu Emphysem-{\"a}hnlichen L{\"a}sionen. Diese L{\"a}sionen wiesen Zeichen einer Gewebsumstrukturierung auf, oft in Assoziation mit chronischer Inflammation und geringer Inzidenz von Lungentumoren. Die Infiltration der entz{\"u}ndlichen Zellen erfolgte erst nach der Entstehung von Emphysem-{\"a}hnlichen L{\"a}sionen und k{\"o}nnte zur sp{\"a}teren Tumorbildung beigetragen haben. Diese Ergebnisse unterst{\"u}tzen ein Modell, in welchem der kontinuierliche regenerative Prozess eine tumorf{\"o}rdernde Umgebung schafft. Dabei induziert die Aktivit{\"a}t des onkogenen B-RAF eine alveolare St{\"o}rung, welche urs{\"a}chlich verantwortlich ist f{\"u}r den kontinuierlichen regenerativen Prozess. Das zweite Projekt fokussiert auf die Rolle von endogenem (wildtypischen) B-RAF in einem durch onkogenes C-RAF induzierten Maus Lungentumormodell. F{\"u}r unsere Untersuchungen haben wir eine Mauslinie geschaffen, in welcher B-RAF in den C-RAF Lungentumoren konditionell eliminiert werden kann. Eine konditionelle Eliminierung des B-RAF hat die Entstehung von Lungentumoren nicht blockiert, aber zu reduziertem Tumorwachstum gef{\"u}hrt. Dieses reduzierte Tumorwachstum konnte auf eine reduzierte Zellproliferation zur{\"u}ckgef{\"u}hrt werden. Außerdem konnten wir durch die B-RAF Elimination eine Reduktion der Intensit{\"a}t der mitogenen Signalkaskade beobachten. Insgesamt deuten die Ergebnisse darauf hin, dass das onkogene Potential von C-RAF in vivo unabh{\"a}ngig von B-RAF ist und eine Kooperation von B-RAF und C-RAF jedoch f{\"u}r die vollst{\"a}ndige Aktivierung der mitogenen Signalkaskade wichtig ist.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{Hanselmann2023, author = {Hanselmann, Steffen}, title = {PRC1 serves as a microtubule-bundling protein and is a potential therapeutic target for lung cancer}, doi = {10.25972/OPUS-26631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266314}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Protein regulator of cytokinesis 1 (PRC1) is a microtubule-associated protein with essential roles in mitosis and cytokinesis. Furthermore, the protein is highly expressed in several cancer types which is correlated with aneuploidy and worse patient outcome. In this study it was investigated, whether PRC1 is a potential target for lung cancer as well as its possible nuclear role. Elevated PRC1 expression was cell cycle-dependent with increasing levels from S-phase to G2/M-phase of the cell cycle. Thereby, PRC1 localized at the nucleus during interphase and at the central spindle and midbody during mitosis and cytokinesis. Genome-wide expression profiling by RNA sequencing of ectopically expressed PRC1 resulted in activation of the p53 pathway. A mutant version of PRC1, that is unable to enter the nucleus, induced the same gene sets as wildtype PRC1, suggesting that PRC1 has no nuclear-specific functions in lung cancer cells. Finally, PRC1 overexpression leads to proliferation defects, multi-nucleation, and enlargement of cells which was directly linked to microtubule-bundling within the cytoplasm. For analysis of the requirement of PRC1 in lung cancer, different inducible cell lines were generated to deplete the protein by RNA interference (RNAi) in vitro. PRC1 depletion caused proliferation defects and cytokinesis failures with increased numbers of bi- and multi-nucleated cells compared to non-induced lung cancer cells. Importantly, effects in control cells were less severe as in lung cancer cells. Finally, p53 wildtype lung cancer cells became senescent, whereas p53 mutant cells became apoptotic upon PRC1 depletion. PRC1 is also required for tumorigenesis in vivo, which was shown by using a mouse model for non-small cell lung cancer driven by oncogenic K-RAS and loss of p53. Here, lung tumor area, tumor number, and high-grade tumors were significantly reduced in PRC1 depleted conditions by RNAi. In this study, it is shown that PRC1 serves as a microtubule-bundling protein with essential roles in mitosis and cytokinesis. Expression of the protein needs to be tightly regulated to allow unperturbed proliferation of lung cancer cells. It is suggested that besides phosphorylation of PRC1, the nuclear localization might be a protective mechanism for the cells to prevent perinuclear microtubule-bundling. In conclusion, PRC1 could be a potential target of lung cancer as mono therapy or in combination with a chemotherapeutic agent, like cisplatin, which enhanced the negative effects on proliferation of lung cancer cells in vitro.}, language = {en} } @phdthesis{Thakur2012, author = {Thakur, Chitra}, title = {Lineage tracing of metastasis in a mouse model for Non-small cell lung cancer (NSCLC)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85420}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Non-small cell lung cancer (NSCLC) is the deadliest form of lung cancer and has a poor prognosis due to its high rate of metastasis. Notably, metastasis is one of the leading causes of death among cancer patients. Despite the clinical importance, the cellular and molecular mechanisms that govern the initiation, establishment and progression of metastasis remain unclear. Moreover, knowledge gained on metastatic process was largely based on cultured or in vitro manipulated cells that were reintroduced into immune-compromised recipient mice. In the present study, a spontaneous metastasis mouse model for NSCLC was generated with a heritable fluorescent tag (DsRed) driven by CAG (combination of cytomegalovirus early enhancing element and chicken beta actin) promoter in alveolar type II cells (SpC-rtTA/TetO-Cre/LSL-DsRed). This approach is essential, keeping in mind the reprogramming nature of Myc oncogene (Rapp et al, 2009). Such genetic lineage tracing approach not only allowed us to monitor molecular and cellular changes during development of primary tumor but also led us to identify the different stages of secondary tumor development in distant organs. Upon combined expression of oncogenic C Raf-BXB and c-Myc (MYC-BXB-DsRed) in lung alveolar type II epithelial cells, macroscopic lung tumors arose comprising of both cuboidal and columnal cellular features. C Raf-BXB induced tumors (CRAF-DsRed) exhibit cuboidal morphology and is non-metastatic whereas Myc-BXB induced lung tumors (Myc-BXB-DsRed) present cuboidal-columnar cellular features and is able to undergo metastasis mainly in liver. Surprisingly, cystic lesions which were negative for SpC (Surfactant protein C) and CCSP (Clara cell secretory protein), strongly expressed DsRed proteins indicating its origin from lung alveolar type II cells. Moreover, early lung progenitor markers such as GATA4 (GATA-binding protein 4) and TTF1 (Thyroid Transcription Factor 1) were still expressed in these early cystic lesions suggesting metastasis as a faulty recapitulation of ontogeny (Rapp et al, 2008). Interestingly, mixed cystic lesions and metastatic tumors contained DsRed and SpC positive cells. These results demonstrate secondary tumor progression from cystic, mixed cystic to malignant transformation. Our results shed tremendous light on reprogramming of metastasizing cells during secondary tumor development. Moreover, such fluorescent tagged metastatic mice model can also be used to track the migration ability of metastatic cancer cell to different organs and its potential to differentiate into other cell types such as blood vessel or stromal cell within the primary tumor.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{Simon2019, author = {Simon, Katja}, title = {Identifying the role of Myb-MuvB in gene expression and proliferation of lung cancer cells}, doi = {10.25972/OPUS-16181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161814}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The evolutionary conserved Myb-MuvB (MMB) multiprotein complex is a transcriptional master regulator of mitotic gene expression. The MMB subunits B-MYB, FOXM1 as well as target genes of MMB are often overexpressed in different cancer types. Elevated expression of these genes correlates with an advanced tumor state and a poor prognosis for patients. Furthermore, it has been reported that pathways, which are involved in regulating the mitotic machinery are attractive for a potential treatment of cancers harbouring Ras mutations (Luo et al., 2009). This suggest that the MMB complex could be required for tumorigenesis by mediating overactivity of mitotic genes and that the MMB could be a useful target for lung cancer treatment. However, although MMB has been characterized biochemically, the contribution of MMB to tumorigenesis is largely unknown in particular in vivo. In this thesis, it was demonstrated that the MMB complex is required for lung tumorigenesis in vivo in a mouse model of non small cell lung cancer. Elevated levels of B-MYB, NUSAP1 or CENPF in advanced tumors as opposed to low levels of these proteins levels in grade 1 or 2 tumors support the possible contribution of MMB to lung tumorigenesis and the oncogenic potential of B-MYB.The tumor growth promoting function of B-MYB was illustrated by a lower fraction of KI-67 positive cells in vivo and a significantly high impairment in proliferation after loss of B-Myb in vitro. Defects in cytokinesis and an abnormal cell cycle profile after loss of B-Myb underscore the impact of B-MYB on proliferation of lung cancer cell lines. The incomplete recombination of B-Myb in murine lung tumors and in the tumor derived primary cell lines illustrates the selection pressure against the complete loss of B-Myb and further demonstrats that B-Myb is a tumor-essential gene. In the last part of this thesis, the contribution of MMB to the proliferation of human lung cancer cells was demonstrated by the RNAi-mediated depletion of B-Myb. Detection of elevated B-MYB levels in human adenocarcinoma and a reduced proliferation, cytokinesis defects and abnormal cell cycle profile after loss of B-MYB in human lung cancer cell lines underlines the potential of B-MYB to serve as a clinical marker.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{Kolmer2014, author = {Kolmer, Veronika}, title = {Identifikation von Lungentumoren aus der Atemluft von Patienten durch Einsatz einer massenspektroskopisch-basierten Messmethode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114040}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Lungenkrebs ist die f{\"u}hrende Todesursache unter den Krebstodesf{\"a}llen. Vor allem in sp{\"a}ten Stadien diagnostizierter Lungenkrebs ist schwer zu behandeln und mit einer schlechten Prognose vergesellschaftet. Daher ist es w{\"u}nschenswert, die Tumorerkrankung m{\"o}glichst fr{\"u}h zu diagnostizieren und idealerweise in einem Screening-Test finden zu k{\"o}nnen. In der hier vorliegenden Studie wollten wir die Frage kl{\"a}ren, ob ein von der Firma Sony neu entwickeltes Messverfahren SonyNose-G2_SN8 f{\"u}r die Untersuchung von Atemluft und f{\"u}r die Diagnose von Lungentumoren geeignet ist. F{\"u}r die Studie wurden Atemproben von insgesamt 124 Probanden gesammelt, davon 65 gesunde Studienteilnehmer, 43 Patienten mit histologisch gesichertem Lungenkrebs, 10 Patienten mit COPD und 6 Studienteilnehmern mit nicht lungenkrebsspezifischen Raumforderungen. Die Atemproben wurden innerhalb von 20 Minuten nach Probennahme analysiert. Als Referenz zur getesteten Atemprobe wurde ein Luftgemisch aus gereinigter Luft mit 50\%-iger Luftfeuchtigkeit verwendet. Technisch handelt es sich bei der Auswertung um eine gaschromathographische Pr{\"u}fmethode. Außerdem wurden zus{\"a}tzliche Atemproben von den Patienten bzw. Probanden gesammelt, um diese mittels GC-MS-Messungen auf ihre volatilen organischen Bestandteile hin zu {\"u}berpr{\"u}fen. In den GC-MS-Untersuchungen der Atemproben konnten 263 verschiedene chemische Verbindungen identifiziert werden. Davon konnten 20 Substanzen ermittelt werden, die sich signifikant zwischen der Gruppe „Gesund" und der Gruppe „Lungenkrebs" unterschieden. Diese Substanzen k{\"o}nnten sich folglich als Marker f{\"u}r den Lungenkrebs eignen. Weitere Untersuchungen sind zur {\"U}berpr{\"u}fung dieser Hypothese jedoch erforderlich. Nicht zuletzt aufgrund von Problemen mit der Stabilit{\"a}t einzelner Sensoren, war es mit der SonyNose-G2_SN8 nicht m{\"o}glich, zwischen Lungenkrebs-Patienten, Patienten mit COPD und gesunden Probanden zu unterscheiden. Das getestete Ger{\"a}t eignet sich also nicht f{\"u}r das Lungenkrebs-Screening im klinischen Einsatz. Auch nach der hier vorliegenden Untersuchung bleibt offen, ob Analyseverfahren zur Atemluftdiagnostik als Screening-Methode zur Fr{\"u}herkennung von Lungenkrebs grunds{\"a}tzlich geeignet sind. Der Einsatz der gaschromatographischen-massenspektrometrischen Untersuchungsmethode ist f{\"u}r die Routinediagnostik derzeit noch zu zeitaufwendig und zu teuer. Die Identifikation m{\"o}glicher krebsspezifischer volatiler organischer Verbindungen in der Atemluft von Patienten bleibt f{\"u}r die Forschung weiterhin eine offene und vielversprechende Thematik.}, subject = {Lungenkrebs}, language = {de} } @phdthesis{Hansen2004, author = {Hansen, Anne}, title = {Emotionales Befinden, Krankheitsverarbeitung und {\"U}berlebenszeit bei Bronchialkarzinompatienten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende hypothesenpr{\"u}fende Arbeit hat als erweiterte Replikationsstudie zum Ziel, den Zusammenhang zwischen emotionalem Befinden und Krankheitsverarbeitung bei Bronchialkarzinomkranken zu untersuchen und die Befunde bez{\"u}glich Krankheitsverarbeitung und {\"U}berlebenszeit aus der Vorstudie von Faller et al. (1999) beziehungsweise Faller und B{\"u}lzebruck (2002) zu {\"u}berpr{\"u}fen. 59 an einem Bronchialkarzinom erkrankte Patienten wurden vor Beginn der Prim{\"a}rbehandlung zu ihrem emotionalen Befinden und der Art ihrer Krankheitsbew{\"a}ltigung befragt. Neben der Selbsteinsch{\"a}tzung fand eine Fremdeinsch{\"a}tzung durch die Interviewer statt. Die {\"U}berlebensdaten wurden nach 3 - 5 Jahren erhoben. In der vorliegenden Studie konnte ein Zusammenhang zwischen emotionaler Belastung und depressiver Krankheitsverarbeitung nachgewiesen werden. Die Untersuchung zeigte zudem, dass unter Einbeziehung biomedizinischer prognostischer Faktoren eine selbsteingesch{\"a}tzte depressive Krankheitsverarbeitung mit einer k{\"u}rzeren {\"U}berlebenszeit einhergeht(hazard ratio 1.75, 95\% confidence interval 1.04-2.93, p = 0.034). Der k{\"o}rperliche Leistungszustand (Karnofsky-Index) stellte ebenfalls einen unabh{\"a}ngigen Pr{\"a}diktor f{\"u}r die {\"U}berlebenszeit dar. Diese Ergebnisse stimmen mit denjenigen der Vorstudie von Faller und B{\"u}lzebruck (2002) {\"u}berein. Einschr{\"a}nkungen der Studie bestehen aufgrund der relativ kleinen Stichprobe sowie deren hoher Selektivit{\"a}t.}, language = {de} } @phdthesis{Ehrig2012, author = {Ehrig, Klaas}, title = {Effects of stem cell transcription factor-expressing vaccinia viruses in oncolytic virotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Krebserkrankungen bleiben auch im Jahr 2012 die zweith{\"a}uftigste Todesursache in der industralisierten Welt. Zus{\"a}tzlich hat die Etablierung der Krebsstammzell-Hypothese grunds{\"a}tzliche Auswirkungen auf die Erfolgsaussichten konventioneller Krebstherapie, wie Chemotherapie oder Strahlentherapie. Deswegen ist es von gr{\"o}βter Notwendigkeit, dass neue Ans{\"a}tze zur Krebstherapie entwickelt werden, die den Ausgang der Behandlung verbessern und zu weniger Nebenwirkungen f{\"u}hren. Diverse vorklinische Studien haben gezeigt, dass die onkolytische Virotherapie mit Vaccinia-Viren ein potentes und gut tolerierbares neues Werkzeug in der Krebstherapie darstellt. Die Effizienz des Vaccinia-Virus als Therapeutikum allein oder in Kombination mit Strahlen- oder Chemotherapie wird aktuell in mehreren klinischen Studien der Phasen I \& II getestet. Krebsstammzellen und Stammzellen teilen eine Vielzahl von Eigenschaften, wie die F{\"a}higkeit zur Selbst-Erneuerung und Pluripotenz, Stilllegung der Zellproliferation, Resistenz gegen Medikamente oder Bestrahlung, die Expression von diversen Zelloberfl{\"a}chen-molek{\"u}len, die Aktivierung und Hemmung spezifischer Signaltransduktionswege oder die Expression von Stammzell-spezifischen Genen. In dieser Arbeit wurden zwei neue rekombinante Vaccinia-Viren entwickelt, welche die Stammzell-Transkriptionsfaktoren Nanog (GLV-1h205) und Oct4 (GLV-1h208) exprimieren, um tiefere Einblicke in die Rolle dieser Masterregulatoren in der Entstehung von Krebs und ihrem Einfluss auf die onkolytische Virotherapie zu gewinnen. Das Replikationspotential beider Virusst{\"a}mme in menschlichen A549-Zellen und PC-3-Zellen wurde anhand von Replikations-Assays bestimmt. Die Expression der Virus-spezifischen Markergene Ruc-GFP und beta-Galaktosidase, wie auch die Expression der Transkriptionsfaktoren Nanog und Oct4 wurde mit Hilfe von RT-PCR, SDS-PAGE und Western blotting, sowie immunozytochemischen Experimenten nachgewiesen. Des Weiteren wurde der Einfluss einer GLV-1h205-Infektion von A549-Zellen auf den Zellzyklus untersucht. Zudem wurde die Bedeutung der Virus-vermittelten Transkriptionsfaktor-Expression auf die Behandlung von subkutanen A549-Tumoren in einem Xenograft-Modell untersucht. Zur Untersuchung, ob die beobachteten Vorteile in der Behandlung von Lungenadenokarzinomen in M{\"a}usen mit GLV-1h205 Promoter- oder Transkriptionsfaktor-abh{\"a}ngig sind, wurde ein Kontroll-Virus (GLV-1h321) hergestellt, dass f{\"u}r eine unfunktionale Nanog-Mutante codiert. Mittels SDS-PAGE und Western blotting sowie Immunozytochemie wurde die Transgen-Expression analysiert. Ein weitere Aspekt dieser Arbeit war die Fragestellung, ob sich das onkolyische Vaccinia-Virus GLV-1h68 eignet, als neues und weniger invasives Therapeutikum effizient Darmkrebszellen zu infizieren um sich in ihnen zu replizieren und diese anschlieβend zu lysieren. Ein derartiger Therapieansatz w{\"u}rde besonders im Hinblick auf sp{\"a}t diagnostizierten, metastasierenden Darmkrebs eine interessante Behandlungsalternative darstellen. Virale Markergen-expression wurde anhand von Fluoreszenzmikroskopie und FACS-Analyse untersucht. Desweiteren wurde gezeigt, dass die einmalige Administration von GLV-1h68 in mindestens zwei verschiedenen Darmkrebszelllinien zu einer signifikanten Inhibierung des Tumorwachstums in vivo und zu signifikant verbessertem {\"U}berleben f{\"u}hrt. Der Transkriptionsfaktor Klf4 wird zwar stark in ruhenden, ausdifferenzierten Zellen des Darmepithels exprimiert, ist hingegen bei Darmkrebs generell dramatisch herabreguliert. Die Expression von Klf4 f{\"u}hrt zu einem Stop der Zellproliferation und inhibiert die Aktivit{\"a}t des Wnt-Signalweges, indem es im Zellkern an die Transaktivierungsdom{\"a}ne von beta-Catenin bindet. Um die Behandlung von Darmkrebs mit Hilfe onkolytischer Virotherapie weiter zu verbessern, wurden verschiedene Vaccinia-Viren (GLV-1h290-292) erzeugt, die durch verschiedene Promoterst{\"a}rken die Expression unterschiedlicher Mengen an Tumorsuppressor Klf4 vermitteln. Die anf{\"a}ngliche Charakterisierung der drei Virusst{\"a}mme mittels Replikations-Assay, Zytotoxizit{\"a}tstudien, SDS-PAGE und Western blotting, Immunozytochemie sowie die Analyse der Proteinfunktion mit Hilfe von qPCR- und ELISA-Analysen zur Bestimmung von zellul{\"a}rem beta-Catenin, zeigten eine Promoter-abh{\"a}ngige Expression und Wirkung von Klf4. F{\"u}r weitere Analysen wurde das Virus GLV-1h291 gew{\"a}hlt, welches nach Infektion die gr{\"o}βte Menge an Klf4 produziert und zus{\"a}tzlich durch die C-terminale Fusion einer TAT Transduktionsdom{\"a}ne Membran-g{\"a}ngig gemacht (GLV-1h391). Die erhaltenen Befunde machen das Klf4-TAT-kodierende Vaccinia-Virus GLV-1h391 zu einem vielversprechenden Kandidaten f{\"u}r eine Behandlung von Darmkrebs beim Menschen.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{Afify2007, author = {Afify, Samar}, title = {Drug targeting delivery systems for treatment of Raf-1 induced lung tumors in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The aim of the present study was to design different dosage forms as carrier systems to deliver sorafenib to the lung of BXB-23 transgenic mice using different routes of administration. Three dosage forms were used one of them was an oil-in-water emulsion and the oral route was chosen for this experiment. The other delivery system was a liposome preparation for intratracheal instillation. In this case the oral route was considered as a control experiment. The last dosage form was PLGA microspheres. Before sorafenib administration it was important to develop a HPLC method to assess sorafenib absorption after its administration and to determine its concentrations in mouse serum. The HPLC method allowed sorafenib quantification in small volumes (30 µl) of mouse serum and tissues. The developed HPLC method was validated resulting in satisfactory selectivity, good linearity, good accuracy and precision over the concentration range examined. Sorafenib was successfully incorporated in a fat emulsion (o/w) using a traditional method resulting in a white homogenous emulsion and no particle aggregation was observed. Sorafenib exhibited antitumor activity on the lung adenoma in BXB-23 transgenic mice when administered orally (2 mg sorafenib per mouse) in the emulsion preparation. The determined effect was an approximately 29 \% reduction in the tumor area of the adenoma foci and a proliferation reduction. In order to improve the pharmacological effects of sorafenib on the lung adenoma in BXB-23 mice, the targeting of sorafenib directly to the site of action (the lung) was an attractive concept. For this purpose the intratracheal route was used. Since sorafenib administration by instillation required incorporation of sorafenib in a dosage form suitable for its lipophilic nature, a liposome suspension was the second dosage form used. A lyophilization method was employed for sorafenib liposome preparation utilizing dilauroylphosphatidylcholine (DLPC) which is safe and tolerable for the lung. Incorporation of sorafenib in the liposomes did not influence the particle size and its distribution. The sorafenib liposomes showed high encapsulation efficiency, good stability at 4 °C for one month and satisfactory in vitro release properties and inhibited Raf-1 mediated activation of ERK in cell culture assay. In a pharmacokinetic experiment sorafenib loaded liposomes were instilled directly into the lung. The results revealed that a significant level of sorafenib was achieved in the lung tissues after 2 hours and then reduced after 48 h and remained nearly constant for one week. On the other hand, only traces of sorafenib were found in the mice serum up to 48 h. Subsequently, the pharmacological activity of sorafenib (1 mg per mouse) was studied when delivered in a liposomal suspension intratracheally to treat the lung adenoma of BXB-23 mice. The data of this experiment demonstrated that sorafenib intratracheal instillation resulted in a reduction of tumor area of adenoma foci (67 \%) and an elevation of the percent of apoptotic cells. In contrast, prolongation of the treatment period did not further enhance sorafenib activity on the lung adenoma. This previous finding suggested a development of multidrug resistance (MDR) by the adenoma foci cells against sorafenib instillation, which was examined by immunohistochemistry staining. The percent of MDR positive cells was higher after two and three weeks sorafenib liposome instillation treatment than that after one week treatment. The last dosage form used for sorafenib was microspheres, which were prepared by emulsion-diffusion-evaporation method using biodegradable PLGA 50:50 resulting in a white lyophilized powder. The system was characterized physicochemically and revealed a good microspheres yield, high encapsulation efficiency, a homogenous particle size distribution and slow in vitro release of sorafenib. The other strategy studied in the present research project was gene delivery to target the lung bearing tumor of BXB-23 mice using a non-viral vector (polyethylenimine). Polyethylenimine (PEI) was used to investigate its efficiency in transfecting lung bearing tumor of BXB-23 mice model and its ability to transfect the adenoma foci cells. LacZ, which encodes Beta-galactosidase was used in the present study as a reporter gene and was complexed with PEI before delivered intravenously. A high LacZ expression in the alveolar region with some expression in the adenoma foci was observed. On contrary, a low LacZ expression in the alveoli and in the adenoma foci was achieved after instillation of the same polyplex intratracheally.}, subject = {Maus}, language = {en} } @phdthesis{Kuehnemundt2024, author = {K{\"u}hnemundt, Johanna}, title = {Defined microphysiologic 3D tumour models with aspects from the tumour microenvironment for the evaluation of cellular immunotherapies}, doi = {10.25972/OPUS-27667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276674}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Adoptive cellular immunotherapy with chimeric antigen receptor (CAR) T cells is highly effective in haematological malignancies. This success, however, has not been achieved in solid tumours so far. In contrast to hematologic malignancies, solid tumours include a hostile tumour microenvironment (TME), that poses additional challenges for curative effects and consistent therapeutic outcome. These challenges manifest in physical and immunological barriers that dampen efficacy of the CAR T cells. Preclinical testing of novel cellular immunotherapies is performed mainly in 2D cell culture and animal experiments. While 2D cell culture is an easy technique for efficacy analysis, animal studies reveal information about toxicity in vivo. However, 2D cell culture cannot fully reflect the complexity observed in vivo, because cells are cultured without anchorage to a matrix and only short-term periods are feasible. Animal studies provide a more complex tissue environment, but xenografts often lack human stroma and tumour inoculation occurs mostly ectopically. This emphasises the need for standardisable and scalable tumour models with incorporated TME-aspects, which enable preclinical testing with enhanced predictive value for the clinical outcome of immunotherapies. Therefore, microphysiologic 3D tumour models based on the biological SISmuc (Small Intestinal mucosa and Submucosa) matrix with preserved basement membrane were engaged and improved in this work to serve as a modular and versatile tumour model for efficacy testing of CAR T cells. In order to reflect a variety of cancer entities, TME-aspects, long-term stability and to enhance the read-out options they were further adapted to achieve scalable and standardisable defined microphysiologic 3D tumour models. In this work, novel culture modalities (semi-static, sandwich-culture) were characterised and established that led to an increased and organised tissue generation and long-term stability. Application of the SISmuc matrix was extended to sarcoma and melanoma models and serial bioluminescence intensity (BLI)-based in vivo imaging analysis was established in the microphysiologic 3D tumour models, which represents a time-efficient read-out method for quality evaluation of the models and treatment efficacy analysis, that is independent of the cell phenotype. Isolation of cancer-associated-fibroblasts (CAFs) from lung (tumour) tissue was demonstrated and CAF-implementation further led to stromal-enriched microphysiologic 3D tumour models with in vivo-comparable tissue-like architecture. Presence of CAFs was confirmed by CAF-associated markers (FAP, α-SMA, MMP-2/-9) and cytokines correlated with CAF phenotype, angiogenesis, invasion and immunomodulation. Additionally, an endothelial cell barrier was implemented for static and dynamic culture in a novel bioreactor set-up, which is of particular interest for the analysis of immune cell diapedesis. Studies in microphysiologic 3D Ewing's sarcoma models indicated that sarcoma cells could be sensitised for GD2-targeting CAR T cells. After enhancing the scale of assessment of the microphysiologic 3D tumour models and improving them for CAR T cell testing, the tumour models were used to analyse their sensitivity towards differently designed receptor tyrosine kinase-like orphan receptor 1 (ROR1) CAR T cells and to study the effects of the incorporated TME-aspects on the CAR T cell treatment respectively. ROR1 has been described as a suitable target for several malignancies including triple negative breast cancer (TNBC), as well as lung cancer. Therefore, microphysiologic 3D TNBC and lung cancer models were established. Analysis of ROR1 CAR T cells that differed in costimulation, spacer length and targeting domain, revealed, that the microphysiologic 3D tumour models are highly sensitive and can distinguish optimal from sub-optimal CAR design. Here, higher affinity of the targeting domain induced stronger anti-tumour efficacy and anti-tumour function depended on spacer length, respectively. Long-term treatment for 14 days with ROR1 CAR T cells was demonstrated in dynamic microphysiologic 3D lung tumour models, which did not result in complete tumour cell removal, whereas direct injection of CAR T cells into TNBC and lung tumour models represented an alternative route of application in addition to administration via the medium flow, as it induced strong anti-tumour response. Influence of the incorporated TME-aspects on ROR1 CAR T cell therapy represented by CAF-incorporation and/or TGF-β supplementation was analysed. Presence of TGF-β revealed that the specific TGF-β receptor inhibitor SD-208 improves ROR1 CAR T cell function, because it effectively abrogated immunosuppressive effects of TGF-β in TNBC models. Implementation of CAFs should provide a physical and immunological barrier towards ROR1 CAR T cells, which, however, was not confirmed, as ROR1 CAR T cell function was retained in the presence of CAFs in stromal-enriched microphysiologic 3D lung tumour models. The absence of an effect of CAF enrichment on CAR T cell efficacy suggests a missing component for the development of an immunosuppressive TME, even though immunomodulatory cytokines were detected in co-culture models. Finally, improved gene-edited ROR1 CAR T cells lacking exhaustion-associated genes (PD-1, TGF-β-receptor or both) were challenged by the combination of CAF-enrichment and TGF-β in microphysiologic 3D TNBC models. Results indicated that the absence of PD-1 and TGF-β receptor leads to improved CAR T cells, that induce strong tumour cell lysis, and are protected against the hostile TME. Collectively, the microphysiologic 3D tumour models presented in this work reflect aspects of the hostile TME of solid tumours, engage BLI-based analysis and provide long-term tissue homeostasis. Therefore, they present a defined, scalable, reproducible, standardisable and exportable model for translational research with enhanced predictive value for efficacy testing and candidate selection of cellular immunotherapy, as exemplified by ROR1 CAR T cells.}, subject = {Immuntherapie}, language = {en} } @phdthesis{WeinstockgebPattschull2019, author = {Weinstock [geb. Pattschull], Grit}, title = {Crosstalk between the MMB complex and YAP in transcriptional regulation of cell cycle genes}, doi = {10.25972/OPUS-17086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The Myb-MuvB (MMB) multiprotein complex is a master regulator of cell cycle-dependent gene expression. Target genes of MMB are expressed at elevated levels in several different cancer types and are included in the chromosomal instability (CIN) signature of lung, brain, and breast tumors. This doctoral thesis showed that the complete loss of the MMB core subunit LIN9 leads to strong proliferation defects and nuclear abnormalities in primary lung adenocarcinoma cells. Transcriptome profiling and genome-wide DNA-binding analyses of MMB in lung adenocarcinoma cells revealed that MMB drives the expression of genes linked to cell cycle progression, mitosis, and chromosome segregation by direct binding to promoters of these genes. Unexpectedly, a previously unknown overlap between MMB-dependent genes and several signatures of YAP-regulated genes was identified. YAP is a transcriptional co-activator acting downstream of the Hippo signaling pathway, which is deregulated in many tumor types. Here, MMB and YAP were found to physically interact and co-regulate a set of mitotic and cytokinetic target genes, which are important in cancer. Furthermore, the activation of mitotic genes and the induction of entry into mitosis by YAP were strongly dependent on MMB. By ChIP-seq and 4C-seq, the genome-wide binding of MMB upon YAP overexpression was analyzed and long-range chromatin interaction sites of selected MMB target gene promoters were identified. Strikingly, YAP strongly promoted chromatin-association of B-MYB through binding to distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. Together, the findings of this thesis provide a so far unknown molecular mechanism by which YAP and MMB cooperate to regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, subject = {Krebs }, language = {en} }