@phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Schott2004, author = {Schott, Gisela Marieluise}, title = {Molekularstrahlepitaxie und Charakterisierung von (Ga,Mn)As Halbleiterschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13470}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In der Spintronik bestehen große Bem{\"u}hungen Halbleiter und ferromagnetische Materialien zu kombinieren, um die Vorteile der hoch spezialisierten Mikroelektronik mit denen der modernen magnetischen Speichertechnologie zu verbinden. In vielen Bereichen der Elektronik wird bereits der III-V Halbleiter GaAs eingesetzt und ferromagnetisches (Ga,Mn)As k{\"o}nnte in die vorhandenen optischen und elektronischen Bauteile integriert werden. Deshalb ist eine intensive Erforschung der kristallinen Qualit{\"a}t, der elektrischen und magnetischen Eigenschaften von (Ga,Mn)As-Legierungsschichten von besonderem Interesse. Wegen der niedrigen L{\"o}slichkeit der Mangan-Atome in GaAs, muss (Ga,Mn)As außerhalb des thermodynamischen Gleichgewichtes mit Niedertemperatur-Molekularstrahl-Epitaxie hergestellt werden, um eine ausreichend hohe Konzentration an magnetischen Ionen zu erreichen. Dieses Niedertemperatur-Wachstum von Galliumarseniden verursacht Schwierigkeiten, da unerw{\"u}nschte Defekte eingebaut werden k{\"o}nnen. Die Art der Defekte und die Anzahl ist abh{\"a}ngig von den Wachstumsparametern. Vor allem das {\"u}bersch{\"u}ssige Arsen beeinflusst neben dem Mangan-Gehalt die Gitterkonstante und f{\"u}hrt zu einer starken elektrischen und magnetischen Kompensation des (Ga,Mn)As Materials. Abh{\"a}ngig von den Wachstumsparametern wurden Eichkurven zur Kalibrierung des Mangan-Gehaltes aus R{\"o}ntgenbeugungsmessungen, d. h. aus der (Ga,Mn)As-Gitterkonstanten bestimmt. Um ein besseres Verst{\"a}ndnis {\"u}ber die Einfl{\"u}sse der Wachstumsparameter neben dem Mangan-Gehalt auf die Gitterkonstante zu bekommen, wurden Probenserien gewachsen und mit R{\"o}ntgenbeugung und Sekund{\"a}rionen-Massenspektroskopie untersucht. Es wurde festgestellt, dass der Mangan-Gehalt, unabh{\"a}ngig von den Wachstumsparametern, allein vom Mangan-Fluss bestimmt wird. Die Gitterkonstante hingegen zeigte eine Abh{\"a}ngigkeit von den Wachstumsparametern, d. h. von dem eingebauten {\"u}bersch{\"u}ssigen Arsen in das (Ga,Mn)As-Gitter. Im weiteren wurden temperaturabh{\"a}ngige laterale Leitf{\"a}higkeitsmessungen an verschiedenen (Ga,Mn)As-Einzelschichten durchgef{\"u}hrt. Es ergab sich eine Abh{\"a}ngigkeit nicht nur von dem Mangan-Gehalt, sondern auch von den Wachstumsparametern. Neben den Leitf{\"a}higkeitsmessungen wurden mit Kapazit{\"a}ts-Messungen die Ladungstr{\"a}gerkonzentrationen an verschiedenen (Ga,Mn)As-Schichten bestimmt. Es konnten Wachstumsbedingungen gefunden werden, bei der mit einem Mangan-Gehalt von 6\% eine Ladungstr{\"a}gerkonzentration von 2 · 10^(21) cm^(-3) erreicht wurde. Diese Schichten konnten reproduzierbar mit einer Curie-Temperatur von 70 K bei einer Schichtdicke von 70 nm hergestellt werden. Mit ex-situ Tempern konnte die Curie-Temperatur auf 140 K erh{\"o}ht werden. Neben (Ga,Mn)As-Einzelschichten wurden auch verschiedene (GaAs/MnAs)- {\"U}bergitterstrukturen gewachsen und mit R{\"o}ntgenbeugung charakterisiert. Ziel was es, {\"U}bergitter herzustellen mit einem hohen mittleren Mangan-Gehalt, indem die GaAs-Schichten m{\"o}glichst d{\"u}nn und die MnAs-Submonolagen m{\"o}glichst dick gewachsen wurden. D{\"u}nnere GaAs-Schichten als 10 ML Dicke f{\"u}hrten unabh{\"a}ngig von der Dicke der MnAs-Submonolage und den Wachstumsparametern zu polykristallinem Wachstum. Die dickste MnAs-Submonolage, die in einer {\"U}bergitterstruktur erreicht wurde, betrug 0.38 ML. {\"U}bergitterstrukturen mit nominell sehr hohem Mangan-Gehalt zeigen eine reduzierte Intensit{\"a}t der {\"U}bergitterreflexe, was auf eine Diffusion der Mangan-Atome hindeutet. Der experimentelle Wert der Curie-Temperatur von (Ga,Mn)As scheint durch die starke Kompensation des Materials limitiert zu sein. Theoretische Berechnungen auf der Grundlage des ladungstr{\"a}gerinduzierten Ferromagnetismus besagen eine Erh{\"o}hung der Curie-Temperatur mit Zunahme der Mangan-Atome auf Gallium-Gitterpl{\"a}tzen und der L{\"o}cherkonzentration proportional [Mn_Ga] · p^(1/3). Zun{\"a}chst wurden LT-GaAs:C-Schichten mit den Wachstumsbedingungen der LT-(Ga,Mn)As-Schichten gewachsen, um bei diesen Wachstumsbedingungen die elektrische Aktivierung der Kohlenstoffatome zu bestimmen. Es konnte eine L{\"o}cherkonzentration von 5 · 10^19 cm^(-3) verwirklicht werden. Aufgrund der erfolgreichen p-Dotierung von LT-GaAs:C wurden (Ga,Mn)As-Einzelschichten zus{\"a}tzlich mit Kohlenstoff p-dotiert. Abh{\"a}ngig von den Wachstumsbedingungen konnte eine Erh{\"o}hung der Ladungstr{\"a}gerkonzentration im Vergleich zu den (Ga,Mn)As-Schichten erreicht werden. Trotzdem ergaben magnetische Messungen f{\"u}r alle (Ga,Mn)As:C-Schichten eine Abnahme der Curie-Temperatur. Der Einfluss der Kohlenstoff-Dotierung auf die Gitterkonstante, die elektrische Leitf{\"a}higkeit und die Magnetisierung ließ auf einen ver{\"a}nderten Einbau der Mangan-Atome verursacht durch die Kohlenstoff-Dotierung schließen.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Semmel2010, author = {Semmel, Julia Birgit}, title = {Herstellung von Quantenkaskadenlaserstrukturen auf InP und Entwicklung alternativer Bauteilkonzepte f{\"u}r den monomodigen Betrieb}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Das zentrale Thema der vorliegenden Arbeit ist die Konzeptionierung und Charakterisierung verschiedener innovativer Bauteildesigns zur Optimierung der spektralen sowie elektro-optischen Eigenschaften von Quantenkaskadenlasern. Die Quantenkaskadenlaserschichten, die diesen Konzepten zu Grunde liegen wurden im Rahmen dieser Arbeit mittels Molekularstrahlepitaxie hergestellt und optimiert. Diese Optimierung machte auch die Realisierung von Dauerstrichbetrieb m{\"o}glich. Dazu werden zun{\"a}chst die grundlegenden Eigenschaften von den in dieser Arbeit verwendeten III-V-Halbleitern sowie des InP-Materialsystems erl{\"a}utert. F{\"u}r diese Arbeit ist dabei die Kombination der beiden tern{\"a}ren Verbindungshalbleiter InGaAs und InAlAs in einer Halbleiterheterostruktur von zentraler Bedeutung, aus denen die aktive Zone der hier vorgestellten Quantenkaskadenlaser besteht. Basierend auf dem zweiten Kapitel wird dann im dritten Kapitel auf das Zusammenspiel der einzelnen konkurrierenden strahlenden und nicht strahlenden Streuprozesse in einer Quantenkaskadenlaserstruktur eingegangen. Dabei wird die prinzipielle Funktionsweise eines solchen komplexen Systems an Hand eines 3-Quantenfilm-Designs erl{\"a}utert. Das vierte Kapitel besch{\"a}ftigt sich mit der Herstellung und Grundcharakterisierung der Laserstrukturen. Dabei wird kurz das Konzept der Molekularstrahlepitaxie erkl{\"a}rt sowie der Aufbau der verwendeten Anlage beschrieben. Da ein Betrieb der Bauteile im Dauerstrichbetrieb deren Anwendbarkeit in vielen Bereichen verbessert, wird im f{\"u}nften Kapitel an Hand eines ausgew{\"a}hlten Strukturdesigns der Weg bis hin zur Realisierung des Dauerstrichbetriebs beschrieben. Des Weiteren wird auf einen besonderen Prozess zur Verbesserung der W{\"a}rmeleitf{\"a}higkeit der fertigen Bauteile eingegangen. Dieser sogenannte Doppelkanal-Stegwellenleiter-Prozess zeichnet sich dadurch aus, dass der entstehende Lasersteg seitlich durch zwei nasschemisch ge{\"a}tzte Gr{\"a}ben begrenzt wird.Die letzten drei Kapitel besch{\"a}ftigen sich mit verschiedenen Bauteilkonzepten zur Optimierung der spektralen sowie elektro-optischen Eigenschaften der Quantenkaskadenlaser. In Kapitel sechs werden dabei Mikrolaser mit tiefge{\"a}tzten Bragg-Spiegeln zur Realisierung von monomodigem Betrieb vorgestellt. Im folgenden Kapitel werden Laser mit aktiven gekoppelten Ringresonatoren vorgestellt. Der gekoppelte Ring funktioniert dabei als Filter nach dem Vernier-Prinzip und erm{\"o}glicht so monomodigen Betrieb. Im letzten Kapitel stehen schließlich Quantenkaskadenlaser mit trapezf{\"o}rmigem Verst{\"a}rkungsbereich im Mittelpunkt. Ziel dieses Teils der vorliegenden Arbeit war es die Ausgangsleistung der Bauteile zu erh{\"o}hen und dabei gleichzeitig die Fernfeldeigenschaften zu verbessern.}, subject = {Quantenkaskadenlaser}, language = {de} } @phdthesis{Knebl2019, author = {Knebl, Georg}, title = {Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen}, doi = {10.25972/OPUS-19147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191471}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Topologische Isolatoren geh{\"o}ren zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die L{\"o}sung dieser Fragen voran. Topologische Rand- bzw. Oberfl{\"a}chenzust{\"a}nde wurden f{\"u}r unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch f{\"u}r GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bed{\"u}rfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit pr{\"a}sentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess erm{\"o}glicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse f{\"u}r Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate pr{\"a}sentiert. Auch mit verbessertem Prozess zeigten sich Leckstr{\"o}me zum Substrat. Diese erschweren eine elektrostatische Kontrolle {\"u}ber Backgates. Die erstmals durch optische Anregung pr{\"a}sentierte Manipulation der Ladungstr{\"a}gerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodr{\"a}hte und -flocken mittels Molekularstrahlepitaxie f{\"u}r die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung - Kapitel 1 f{\"u}hrt {\"u}ber die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zust{\"a}nde realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingef{\"u}hrt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfl{\"a}che aber topologisch gesch{\"u}tzte Zust{\"a}nde auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen - abh{\"a}ngig vom Aufbau der Heterostruktur - eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat f{\"u}r die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb geh{\"o}ren zur 6,1 {\AA}ngstr{\"o}m-Familie, welche f{\"u}r ihre opto-elektronischen Eigenschaften bekannt ist und h{\"a}ufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 {\AA}ngstr{\"o}m-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein {\"U}berblick {\"u}ber die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskan{\"a}le eine Herausforderung f{\"u}r die Detektion der topologischen Randkan{\"a}le dar. Kapitel 3 behandelt L{\"o}sungsans{\"a}tze hierf{\"u}r und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zuk{\"u}nftige Realisation topologischer Randkan{\"a}le. In Abschnitt 3.1 werden numerische Simulationen pr{\"a}sentiert, die sich mit der Inversion der elektronischen Niveaus in Abh{\"a}ngigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs besch{\"a}ftigen. Ein geeigneter Schichtaufbau f{\"u}r Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird pr{\"a}sentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualit{\"a}t begr{\"u}ndet. Ein Wechseln von bin{\"a}rem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinl{\"a}ngliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster {\"A}tzprozesse - eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes - liefert zusammen mit der Entfernung von Oberfl{\"a}chenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver {\"A}tzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderst{\"a}nde, ohne Kurzschlusskan{\"a}le zu erzeugen. Abschnitt 3.4 gibt einen kompakten {\"U}berblick, {\"u}ber den im weiteren Verlauf der Arbeit verwendeten „best practice" Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 pr{\"a}sentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde {\"u}ber numerische Simulationen so gew{\"a}hlt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am {\"U}bergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen f{\"u}r konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen best{\"a}tigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierf{\"u}r kommen mehrere Ursachen in Betracht: Eine {\"U}bersch{\"a}tzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitf{\"a}higkeit wurden Al-haltigen Schichten am GaSb/InAs {\"U}bergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungstr{\"a}gertyps der InAs/GaSb-Doppelquantent{\"o}pfe gibt eine zus{\"a}tzliche Kontrollm{\"o}glichkeit im Phasendiagramm. Optische Anregung erm{\"o}glicht den Wechsel der Majorit{\"a}tsladungstr{\"a}ger von Elektronen zu L{\"o}chern. Dabei wird ein Regime durchlaufen, in dem beide Ladungstr{\"a}ger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitf{\"a}higkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zust{\"a}nde belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die M{\"o}glichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zust{\"a}nde in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erkl{\"a}rt. Sie wird in Abh{\"a}ngigkeit von der Temperatur, der Anregungswellenl{\"a}nge sowie der Anregungsintensit{\"a}t untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines {\"U}bergitters auf der Substratseite der Quantenfilmstruktur essentiell f{\"u}r die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren M{\"o}glichkeiten, wie optisch definierte topologischen Phasen-Grenzfl{\"a}chen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erh{\"o}hten Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnisses ist die Verwendung von Nanostrukturen f{\"u}r das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt f{\"u}r die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodr{\"a}hten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erl{\"a}utert (Abschnitt 6.1). Ausgehend von einer Einf{\"u}hrung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erkl{\"a}rung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochaufl{\"o}sender R{\"o}ntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodr{\"a}hte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus f{\"u}r Nanodr{\"a}hte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtr{\"o}pfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3).}, language = {de} }