@article{SelkrigMohammadNgetal.2018, author = {Selkrig, Joel and Mohammad, Farhan and Ng, Soon Hwee and Chua, Jia Yi and Tumkaya, Tayfun and Ho, Joses and Chiang, Yin Ning and Rieger, Dirk and Pettersson, Sven and Helfrich-F{\"o}rster, Charlotte and Yew, Joanne Y. and Claridge-Chang, Adam}, title = {The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-28764-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235891}, year = {2018}, abstract = {In animals, commensal microbes modulate various physiological functions, including behavior. While microbiota exposure is required for normal behavior in mammals, it is not known how widely this dependency is present in other animal species. We proposed the hypothesis that the microbiome has a major influence on the behavior of the vinegar fly (Drosophila melanogaster), a major invertebrate model organism. Several assays were used to test the contribution of the microbiome on some well-characterized behaviors: defensive behavior, sleep, locomotion, and courtship in microbe-bearing, control flies and two generations of germ-free animals. None of the behaviors were largely influenced by the absence of a microbiome, and the small or moderate effects were not generalizable between replicates and/or generations. These results refute the hypothesis, indicating that the Drosophila microbiome does not have a major influence over several behaviors fundamental to the animal's survival and reproduction. The impact of commensal microbes on animal behaviour may not be broadly conserved.}, language = {en} } @article{SchubertHagedornYoshiietal.2018, author = {Schubert, Frank K. and Hagedorn, Nicolas and Yoshii, Taishi and Helfrich-F{\"o}rster, Charlotte and Rieger, Dirk}, title = {Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system}, series = {Journal of Comparative Neurology}, volume = {526}, journal = {Journal of Comparative Neurology}, doi = {10.1002/cne.24406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234477}, pages = {1209-1231}, year = {2018}, abstract = {Drosophila melanogaster is a long-standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor-labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s-LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre- and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF-neurons (l-LNvs). We could show that the four hardly distinguishable l-LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well-known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla-surface. We named this neuron "extra" l-LNv (l-LNvx). We suggest the anatomical findings reflect different functional properties of the two l-LNv subgroups.}, language = {en} } @article{SchlichtingRiegerCusumanoetal.2018, author = {Schlichting, Matthias and Rieger, Dirk and Cusumano, Paola and Grebler, Rudi and Costa, Rodolfo and Mazzotta, Gabriella M. and Helfrich-F{\"o}rster, Charlotte}, title = {Cryptochrome interacts with actin and enhances eye-mediated light sensitivity of the circadian clock in Drosophila melanogaster}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {238}, doi = {10.3389/fnmol.2018.00238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177086}, year = {2018}, abstract = {Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.}, language = {en} }