@article{SchmidKredelUllrichetal.2021, author = {Schmid, Benedikt and Kredel, Markus and Ullrich, Roman and Krenn, Katharina and Lucas, Rudolf and Markstaller, Klaus and Fischer, Bernhard and Kranke, Peter and Meybohm, Patrick and Zwißler, Bernhard and Frank, Sandra}, title = {Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate-to-severe ARDS - a randomized, placebo-controlled, double-blind trial}, series = {Trials}, volume = {22}, journal = {Trials}, number = {1}, doi = {10.1186/s13063-021-05588-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258783}, pages = {643}, year = {2021}, abstract = {Background Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients. Methods This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days. Discussion The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion. Trial registration This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47.}, language = {en} } @article{ReisPoppSchmidetal.2021, author = {Reis, Stefanie and Popp, Maria and Schmid, Benedikt and Stegemann, Miriam and Metzendorf, Maria-Inti and Kranke, Peter and Meybohm, Patrick and Weibel, Stephanie}, title = {Safety and efficacy of intermediate- and therapeutic-dose anticoagulation for hospitalised patients with COVID-19: a systematic review and meta-analysis}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {1}, issn = {2077-0383}, doi = {10.3390/jcm11010057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252285}, year = {2021}, abstract = {Background: COVID-19 patients are at high thrombotic risk. The safety and efficacy of different anticoagulation regimens in COVID-19 patients remain unclear. Methods: We searched for randomised controlled trials (RCTs) comparing intermediate- or therapeutic-dose anticoagulation to standard thromboprophylaxis in hospitalised patients with COVID-19 irrespective of disease severity. To assess efficacy and safety, we meta-analysed data for all-cause mortality, clinical status, thrombotic event or death, and major bleedings. Results: Eight RCTs, including 5580 patients, were identified, with two comparing intermediate- and six therapeutic-dose anticoagulation to standard thromboprophylaxis. Intermediate-dose anticoagulation may have little or no effect on any thrombotic event or death (RR 1.03, 95\% CI 0.86-1.24), but may increase major bleedings (RR 1.48, 95\% CI 0.53-4.15) in moderate to severe COVID-19 patients. Therapeutic-dose anticoagulation may decrease any thrombotic event or death in patients with moderate COVID-19 (RR 0.64, 95\% CI 0.38-1.07), but may have little or no effect in patients with severe disease (RR 0.98, 95\% CI 0.86-1.12). The risk of major bleedings may increase independent of disease severity (RR 1.78, 95\% CI 1.15-2.74). Conclusions: Certainty of evidence is still low. Moderately affected COVID-19 patients may benefit from therapeutic-dose anticoagulation, but the risk for bleeding is increased.}, language = {en} } @article{HerrmannNotzSchlesingeretal.2021, author = {Herrmann, Johannes and Notz, Quirin and Schlesinger, Tobias and Stumpner, Jan and Kredel, Markus and Sitter, Magdalena and Schmid, Benedikt and Kranke, Peter and Schulze, Harald and Meybohm, Patrick and Lotz, Christopher}, title = {Point of care diagnostic of hypercoagulability and platelet function in COVID-19 induced acute respiratory distress syndrome: a retrospective observational study}, series = {Thrombosis Journal}, volume = {19}, journal = {Thrombosis Journal}, number = {1}, doi = {10.1186/s12959-021-00293-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260739}, year = {2021}, abstract = {Background Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. Methods This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. Results Median age was 61 years (IQR: 51-69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87-189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 \% of the patients with deep vein/arm thrombosis in 39 \%, pulmonary embolism in 22 \%, and major bleeding in 17 \%. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 \%CI 1.3-10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. Conclusions Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..}, language = {en} }