@article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Groll, J{\"u}rgen and Teßmar, J{\"o}rg and Blunk, Torsten}, title = {Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284239}, year = {2022}, abstract = {In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.}, language = {en} } @article{ShanBoeckKelleretal.2021, author = {Shan, Junwen and B{\"o}ck, Thomas and Keller, Thorsten and Forster, Leonard and Blunk, Torsten and Groll, J{\"u}rgen and Teßmar, J{\"o}rg}, title = {TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {19}, issn = {1420-3049}, doi = {10.3390/molecules26195963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248362}, year = {2021}, abstract = {Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer's backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker.}, language = {en} } @article{SchmidtAbinzanoMensingaetal.2020, author = {Schmidt, Stefanie and Abinzano, Florencia and Mensinga, Anneloes and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Malda, Jos and Levato, Riccardo and Blunk, Torsten}, title = {Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms21197071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236180}, year = {2020}, abstract = {Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.}, language = {en} } @article{SchmidSchmidtHazuretal.2020, author = {Schmid, Rafael and Schmidt, Sonja K. and Hazur, Jonas and Detsch, Rainer and Maurer, Evelyn and Boccaccini, Aldo R. and Hauptstein, Julia and Teßmar, J{\"o}rg and Blunk, Torsten and Schr{\"u}fer, Stefan and Schubert, Dirk W. and Horch, Raymund E. and Bosserhoff, Anja K. and Arkudas, Andreas and Kengelbach-Weigand, Annika}, title = {Comparison of hydrogels for the development of well-defined 3D cancer models of breast cancer and melanoma}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {8}, issn = {2072-6694}, doi = {10.3390/cancers12082320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211195}, year = {2020}, abstract = {Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA-GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA-GEL. MCF-7 showed a preference for 1\% alginate. Melanoma cells tended to proliferate better in ADA-GEL and HA-SH than mammary carcinoma cells. In 1\% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3\% alginate was the stiffest material, and 2.5\% ADA-GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1\% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication.}, language = {en} } @article{HorderGuazaLasherasGrummeletal.2021, author = {Horder, Hannes and Guaza Lasheras, Mar and Grummel, Nadine and Nadernezhad, Ali and Herbig, Johannes and Erg{\"u}n, S{\"u}leyman and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Fabry, Ben and Bauer-Kreisel, Petra and Blunk, Torsten}, title = {Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, doi = {10.3390/cells10040803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236496}, year = {2021}, abstract = {Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell-cell and cell-matrix interplay within the tumor-stroma microenvironment}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Horder, Hannes and Stahlhut, Philipp and Groll, J{\"u}rgen and Blunk, Torsten and Teßmar, J{\"o}rg}, title = {Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {2}, doi = {10.1002/mabi.202100331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257556}, pages = {2100331}, year = {2022}, abstract = {3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol-ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.}, language = {en} }