@article{GrunzPennigFieberetal.2021, author = {Grunz, Jan-Peter and Pennig, Lenhard and Fieber, Tabea and Gietzen, Carsten Herbert and Heidenreich, Julius Frederik and Huflage, Henner and Gruschwitz, Philipp and Kuhl, Philipp Josef and Petritsch, Bernhard and Kosmala, Aleksander and Bley, Thorsten Alexander and Gassenmaier, Tobias}, title = {Twin robotic x-ray system in small bone and joint trauma: Impact of cone-beam computed tomography on treatment decisions}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, issn = {0938-7994}, doi = {10.1007/s00330-020-07563-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235233}, pages = {3600-3609}, year = {2021}, abstract = {Objectives Trauma evaluation of extremities can be challenging in conventional radiography. A multi-use x-ray system with cone-beam CT (CBCT) option facilitates ancillary 3-D imaging without repositioning. We assessed the clinical value of CBCT scans by analyzing the influence of additional findings on therapy. Methods Ninety-two patients underwent radiography and subsequent CBCT imaging with the twin robotic scanner (76 wrist/hand/finger and 16 ankle/foot/toe trauma scans). Reports by on-call radiologists before and after CBCT were compared regarding fracture detection, joint affliction, comminuted injuries, and diagnostic confidence. An orthopedic surgeon recommended therapy based on reported findings. Surgical reports (N = 52) and clinical follow-up (N = 85) were used as reference standard. Results CBCT detected more fractures (83/64 of 85), joint involvements (69/53 of 71), and multi-fragment situations (68/50 of 70) than radiography (all p < 0.001). Six fractures suspected in radiographs were ruled out by CBCT. Treatment changes based on additional information from CBCT were recommended in 29 patients (31.5\%). While agreement between advised therapy before CBCT and actual treatment was moderate (κ = 0.41 [95\% confidence interval 0.35-0.47]; p < 0.001), agreement after CBCT was almost perfect (κ = 0.88 [0.83-0.93]; p < 0.001). Diagnostic confidence increased considerably for CBCT studies (p < 0.001). Median effective dose for CBCT was 4.3 μSv [3.3-5.3 μSv] compared to 0.2 μSv [0.1-0.2 μSv] for radiography. Conclusions CBCT provides advantages for the evaluation of acute small bone and joint trauma by detecting and excluding extremity fractures and fracture-related findings more reliably than radiographs. Additional findings induced therapy change in one third of patients, suggesting substantial clinical impact.}, language = {en} } @article{HuflageKarstenKunzetal.2021, author = {Huflage, Henner and Karsten, Sebastian and Kunz, Andreas Steven and Conrads, Nora and Jakubietz, Rafael Gregor and Jakubietz, Michael Georg and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Improved diagnostic accuracy for ulnar-sided TFCC lesions with radial reformation of 3D sequences in wrist MR arthrography}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, number = {12}, issn = {1432-1084}, doi = {10.1007/s00330-021-08024-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266512}, pages = {9399-9407}, year = {2021}, abstract = {Objectives Triangular fibrocartilage complex (TFCC) injuries frequently cause ulnar-sided wrist pain and can induce distal radioulnar joint instability. With its complex three-dimensional structure, diagnosis of TFCC lesions remains a challenging task even in MR arthrograms. The aim of this study was to assess the added diagnostic value of radial reformatting of isotropic 3D MRI datasets compared to standard planes after direct arthrography of the wrist. Methods Ninety-three patients underwent wrist MRI after fluoroscopy-guided multi-compartment arthrography. Two radiologists collectively analyzed two datasets of each MR arthrogram for TFCC injuries, with one set containing standard reconstructions of a 3D thin-slice sequence in axial, coronal and sagittal orientation, while the other set comprised an additional radial plane view with the rotating center positioned at the ulnar styloid. Surgical reports (whenever available) or radiological reports combined with clinical follow-up served as a standard of reference. In addition, diagnostic confidence and assessability of the central disc and ulnar-sided insertions were subjectively evaluated. Results Injuries of the articular disc, styloid and foveal ulnar attachment were present in 20 (23.7\%), 10 (10.8\%) and 9 (9.7\%) patients. Additional radial planes increased diagnostic accuracy for lesions of the styloid (0.83 vs. 0.90; p = 0.016) and foveal (0.86 vs. 0.94; p = 0.039) insertion, whereas no improvement was identified for alterations of the central cartilage disc. Readers' confidence (p < 0.001) and assessability of the ulnar-sided insertions (p < 0.001) were superior with ancillary radial reformatting. Conclusions Access to the radial plane view of isotropic 3D sequences in MR arthrography improves diagnostic accuracy and confidence for ulnar-sided TFCC lesions.}, language = {en} } @article{HuflageFieberFaerberetal.2022, author = {Huflage, Henner and Fieber, Tabea and F{\"a}rber, Christian and Knarr, Jonas and Veldhoen, Simon and Jordan, Martin C. and Gilbert, Fabian and Bley, Thorsten Alexander and Meffert, Rainer H. and Grunz, Jan-Peter and Schmalzl, Jonas}, title = {Interobserver reliability of scapula fracture classifications in intra- and extra-articular injury patterns}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05146-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299795}, year = {2022}, abstract = {Background Morphology and glenoid involvement determine the necessity of surgical management in scapula fractures. While being present in only a small share of patients with shoulder trauma, numerous classification systems have been in use over the years for categorization of scapula fractures. The purpose of this study was to evaluate the established AO/OTA classification in comparison to the classification system of Euler and R{\"u}edi (ER) with regard to interobserver reliability and confidence in clinical practice. Methods Based on CT imaging, 149 patients with scapula fractures were retrospectively categorized by two trauma surgeons and two radiologists using the classification systems of ER and AO/OTA. To measure the interrater reliability, Fleiss kappa (κ) was calculated independently for both fracture classifications. Rater confidence was stated subjectively on a five-point scale and compared with Wilcoxon signed rank tests. Additionally, we computed the intraclass correlation coefficient (ICC) based on absolute agreement in a two-way random effects model to assess the diagnostic confidence agreement between observers. Results In scapula fractures involving the glenoid fossa, interrater reliability was substantial (κ = 0.722; 95\% confidence interval [CI] 0.676-0.769) for the AO/OTA classification in contrast to moderate agreement (κ = 0.579; 95\% CI 0.525-0.634) for the ER classification system. Diagnostic confidence for intra-articular fracture patterns was superior using the AO/OTA classification compared to ER (p < 0.001) with higher confidence agreement (ICC: 0.882 versus 0.831). For extra-articular fractures, ER (κ = 0.817; 95\% CI 0.771-0.863) provided better interrater reliability compared to AO/OTA (κ = 0.734; 95\% CI 0.692-0.776) with higher diagnostic confidence (p < 0.001) and superior agreement between confidence ratings (ICC: 0.881 versus 0.912). Conclusions The AO/OTA classification is most suitable to categorize intra-articular scapula fractures with glenoid involvement, whereas the classification system of Euler and R{\"u}edi appears to be superior in extra-articular injury patterns with fractures involving only the scapula body, spine, acromion and coracoid process.}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Conrads, Nora and Luetkens, Karsten Sebastian and Pannenbecker, Pauline and Paul, Mila Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {10}, issn = {2075-4418}, doi = {10.3390/diagnostics13101677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319281}, year = {2023}, abstract = {In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1-3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732-0.848; p < 0.001) and fracture assessability (0.880; 0.842-0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0-3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise.}, language = {en} }