@article{AltmannMutWolfetal.2021, author = {Altmann, Stephan and Mut, J{\"u}rgen and Wolf, Natalia and Meißner-Weigl, Jutta and Rudert, Maximilian and Jakob, Franz and Gutmann, Marcus and L{\"u}hmann, Tessa and Seibel, J{\"u}rgen and Ebert, Regina}, title = {Metabolic glycoengineering in hMSC-TERT as a model for skeletal precursors by using modified azide/alkyne monosaccharides}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22062820}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259247}, year = {2021}, abstract = {Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac\(_4\)ManNAz) and N-alkyneacetylmannosamine (Ac\(_4\)ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac\(_4\)ManNAz was detectable for up to six days while Ac\(_4\)ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.}, language = {en} } @article{WieseDennstaedtHollmannetal.2021, author = {Wiese, Teresa and Dennst{\"a}dt, Fabio and Hollmann, Claudia and Stonawski, Saskia and Wurst, Catherina and Fink, Julian and Gorte, Erika and Mandasari, Putri and Domschke, Katharina and Hommers, Leif and Vanhove, Bernard and Schumacher, Fabian and Kleuser, Burkard and Seibel, J{\"u}rgen and Rohr, Jan and Buttmann, Mathias and Menke, Andreas and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of acid sphingomyelinase increases regulatory T cells in humans}, series = {Brain Communications}, volume = {3}, journal = {Brain Communications}, number = {2}, doi = {10.1093/braincomms/fcab020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259868}, year = {2021}, abstract = {Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro.}, language = {en} } @article{SchneiderSchauliesSchumacherWiggeretal.2021, author = {Schneider-Schaulies, Sibylle and Schumacher, Fabian and Wigger, Dominik and Sch{\"o}l, Marie and Waghmare, Trushnal and Schlegel, Jan and Seibel, J{\"u}rgen and Kleuser, Burkhard}, title = {Sphingolipids: effectors and Achilles heals in viral infections?}, series = {Cells}, volume = {10}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells10092175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245151}, year = {2021}, abstract = {As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.}, language = {en} } @article{PinznerKellerMutetal.2021, author = {Pinzner, Florian and Keller, Thorsten and Mut, J{\"u}rgen and Bechold, Julian and Seibel, J{\"u}rgen and Groll, J{\"u}rgen}, title = {Polyoxazolines with a vicinally double-bioactivated terminus for biomacromolecular affinity assessment}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s21093153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239530}, year = {2021}, abstract = {Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacing. Here, we develop a synthetic strategy, consisting of a cascade of a thioesterification, native chemical ligation (NCL) and thiol-ene reaction, in order to create three-component polymer conjugates with a defined double bioactivation at the chain end. The target architecture is the vicinal attachment of two biomolecule residues to the α telechelic end point of a polymer and a thioether group at the ω chain end for fixating the conjugate to a gold sensor chip surface. As proof-of-principle studies for affinity measurements, we demonstrate the interaction between covalently bound mannose and ConA in surface acoustic wave (SAW) and surface plasmon resonance (SPR) experiments.}, language = {en} } @article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} }