@article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} } @article{TamihardjaZehnerHartrampfetal.2022, author = {Tamihardja, J{\"o}rg and Zehner, Leonie and Hartrampf, Philipp and Lisowski, Dominik and Kneitz, Susanne and Cirsi, Sinan and Razinskas, Gary and Flentje, Michael and Polat, B{\"u}lent}, title = {Salvage nodal radiotherapy as metastasis-directed therapy for oligorecurrent prostate cancer detected by positron emission tomography shows favorable outcome in long-term follow-up}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {15}, issn = {2072-6694}, doi = {10.3390/cancers14153766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286064}, year = {2022}, abstract = {Simple Summary Patients, who suffer from oligorecurrent prostate cancer with limited nodal involvement, may be offered positron emission tomography (PET)-directed salvage nodal radiotherapy to delay disease progression. This current analysis aimed to access salvage radiotherapy for nodal oligorecurrent prostate cancer with simultaneous integrated boost to PET-involved lymph nodes as metastasis-directed therapy. A long-term oncological outcome was favorable after salvage nodal radiotherapy and severe toxicity rates were low. Androgen deprivation therapy plays a major role in recurrent prostate cancer management and demonstrates a positive influence on the rate of biochemical progression in patients receiving salvage nodal radiotherapy. The present long-term analysis may help clinicians identify patients who would benefit from salvage nodal radiotherapy and androgen deprivation therapy, as a multimodal treatment strategy for oligorecurrent prostate cancer. Abstract Background: The study aimed to access the long-term outcome of salvage nodal radiotherapy (SNRT) in oligorecurrent prostate cancer. Methods: A total of 95 consecutive patients received SNRT for pelvic and/or extrapelvic nodal recurrence after prostate-specific membrane antigen (PSMA) or choline PET from 2010 to 2021. SNRT was applied as external beam radiotherapy with simultaneous integrated boost up to a median total dose of 62.9 Gy (EQD2\(_{1.5Gy}\)) to the recurrent lymph node metastases. The outcome was analyzed by cumulative incidence functions with death as the competing risk. Fine-Gray regression analyses were performed to estimate the relative hazards of the outcome parameters. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (v5.0). The results are as follows: the median follow-up was 47.1 months. The five-year biochemical progression rate (95\% CI) was 50.1\% (35.7-62.9\%). Concomitant androgen deprivation therapy (ADT) was adminstered in 60.0\% of the patients. The five-year biochemical progression rate was 75.0\% (42.0-90.9\%) without ADT versus 35.3\% (19.6-51.4\%) with ADT (p = 0.003). The cumulative five-year late grade 3 GU toxicity rate was 2.1\%. No late grade 3 GI toxicity occured. Conclusions: Metastasis-directed therapy through SNRT for PET-staged oligorecurrent prostate cancer demonstrated a favorable long-term oncologic outcome. Omittance of ADT led to an increased biochemical progression.}, language = {en} } @article{RichterWegenerBreueretal.2021, author = {Richter, Anne and Wegener, Sonja and Breuer, Kathrin and Razinskas, Gary and Weick, Stefan and Exner, Florian and Bratengeier, Klaus and Flentje, Michael and Sauer, Otto and Polat, B{\"u}lent}, title = {Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems}, series = {Radiation Oncology}, volume = {16}, journal = {Radiation Oncology}, doi = {10.1186/s13014-021-01942-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265704}, year = {2021}, abstract = {Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3\%/2 mm) with 100\% points passing and ArcCheck QA (3\%/2 mm) with 99.5\%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.}, language = {en} } @article{TamihardjaCirsiKessleretal.2021, author = {Tamihardja, J{\"o}rg and Cirsi, Sinan and Kessler, Patrick and Razinskas, Gary and Exner, Florian and Richter, Anne and Polat, B{\"u}lent and Flentje, Michael}, title = {Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer}, series = {Radiation Oncology}, volume = {16}, journal = {Radiation Oncology}, doi = {10.1186/s13014-021-01933-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265656}, year = {2021}, abstract = {Background Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. Methods Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTV\(_{DIL}\), PTV\(_{Boost}\), PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. Results In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTV\(_{DIL}\), PTV\(_{Boost}\), and PTV was excellent and no cases of underdosage in D\(_{Mean}\), D_95\%, D_02\%, and D_98\% could be detected. Delivered rectum D\(_{Mean}\) did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95\% CI 1.3-3.1 Gy, p < 0.001) compared to ventral lesions. Conclusions CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage.}, language = {en} } @article{TamihardjaRazinskasExneretal.2021, author = {Tamihardja, J{\"o}rg and Razinskas, Gary and Exner, Florian and Richter, Anne and Kessler, Patrick and Weick, Stefan and Kraft, Johannes and Mantel, Frederick and Flentje, Michael and Polat, B{\"u}lent}, title = {Comparison of treatment plans for hypofractionated high-dose prostate cancer radiotherapy using the Varian Halcyon and the Elekta Synergy platforms}, series = {Journal of Applied Clinical Medical Physics}, volume = {22}, journal = {Journal of Applied Clinical Medical Physics}, number = {9}, doi = {10.1002/acm2.13380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260722}, pages = {262-270}, year = {2021}, abstract = {Purpose To compare radiotherapy plans between an O-ring and a conventional C-arm linac for hypofractionated high-dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi-vendor environment. Methods Twenty prostate cancer treatment plans were irradiated on the O-ring Varian Halcyon linac and were re-optimized for the C-arm Elekta Synergy Agility linac. Dose-volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient-specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate-only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. Results For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3\%/2 mm was 99.3\% (96.7 to 99.8\%) for Synergy and 99.8\% (95.6 to 100\%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of -0.6\% (-1.7 to 0.8\%) for Synergy and 0.2\% (-0.6 to 2.3\%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20\% (p < 0.001). Conclusion Hypofractionated high-dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C-arm Elekta Synergy linac.}, language = {en} } @article{RazinskasBiagioniHecht2018, author = {Razinskas, Gary and Biagioni, Paolo and Hecht, Bert}, title = {Limits of Kirchhoff's laws in plasmonics}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {1921}, doi = {10.1038/s41598-018-20239-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176080}, year = {2018}, abstract = {The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.}, language = {en} } @phdthesis{Razinskas2018, author = {Razinskas, Gary}, title = {Functional plasmonic nanocircuitry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry.}, subject = {Nanooptik}, language = {en} } @article{BrixnerPawłowskaGoetzetal.2014, author = {Brixner, Tobias and Pawłowska, Monika and Goetz, Sebastian and Dreher, Christian and Wurdack, Matthias and Krauss, Enno and Razinskas, Gary and Geisler, Peter and Hecht, Bert}, title = {Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective}, doi = {10.1364/OE.22.031496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111120}, year = {2014}, abstract = {We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space-time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time.}, language = {en} } @article{RewitzKeitzlTuchschereretal.2012, author = {Rewitz, Christian and Keitzl, Thomas and Tuchscherer, Philip and Goetz, Sebastian and Geisler, Peter and Razinskas, Gary and Hecht, Bert and Brixner, Tobias}, title = {Spectral-interference microscopy for characterization of functional plasmonic elements}, series = {Optics Express}, journal = {Optics Express}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85922}, year = {2012}, abstract = {Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena.}, language = {en} }