@article{HinesMaricHinesetal.2018, author = {Hines, Rochelle M. and Maric, Hans Michael and Hines, Dustin J. and Modgil, Amit and Panzanelli, Patrizia and Nakamura, Yasuko and Nathanson, Anna J. and Cross, Alan and Deeb, Tarek and Brandon, Nicholas J. and Davies, Paul and Fritschy, Jean-Marc and Schindelin, Hermann and Moss, Stephen J.}, title = {Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05481-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320719}, year = {2018}, abstract = {Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.}, language = {en} } @article{HeilSchreiberGoetzetal.2018, author = {Heil, Hannah S. and Schreiber, Benjamin and G{\"o}tz, Ralph and Emmerling, Monika and Dabauvalle, Marie-Christine and Krohne, Georg and H{\"o}fling, Sven and Kamp, Martin and Sauer, Markus and Heinze, Katrin G.}, title = {Sharpening emitter localization in front of a tuned mirror}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228080}, year = {2018}, abstract = {Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.}, language = {en} } @phdthesis{Nair2024, author = {Nair, Radhika Karal}, title = {Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors}, doi = {10.25972/OPUS-28174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281742}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states - while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors.}, subject = {Unique Selling Proposition}, language = {en} } @article{HarnošCanizalJuraseketal.2019, author = {Harnoš, Jakub and Ca{\~n}izal, Maria Consuelo Alonso and Jur{\´a}sek, Miroslav and Kumar, Jitender and Holler, Cornelia and Schambony, Alexandra and Han{\´a}kov{\´a}, Kateřina and Bernat{\´i}k, Ondřej and Zdr{\´a}hal, Zbyn{\^e}k and G{\"o}m{\"o}ryov{\´a}, Krist{\´i}na and Gybeľ, Tom{\´a}š and Radaszkiewicz, Tomasz Witold and Kravec, Marek and Trant{\´i}rek, Luk{\´a}š and Ryneš, Jan and Dave, Zankruti and Fern{\´a}ndez-Llamazares, Ana Iris and V{\´a}cha, Robert and Tripsianes, Konstantinos and Hoffmann, Carsten and Bryja, V{\´i}tězslav}, title = {Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09651-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227837}, year = {2019}, abstract = {Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.}, language = {en} } @article{GotruvanGeffenNagyetal.2019, author = {Gotru, Sanjeev Kiran and van Geffen, Johanna P. and Nagy, Magdolna and Mammadova-Bach, Elmina and Eilenberger, Julia and Volz, Julia and Manukjan, Georgi and Schulze, Harald and Wagner, Leonard and Eber, Stefan and Schambeck, Christian and Deppermann, Carsten and Brouns, Sanne and Nurden, Paquita and Greinacher, Andreas and Sachs, Ulrich and Nieswandt, Bernhard and Hermanns, Heike M. and Heemskerk, Johan W. M. and Braun, Attila}, title = {Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44751-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227455}, year = {2019}, abstract = {Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.}, language = {en} } @article{ElMeseryRosenthalRauertWunderlichetal.2019, author = {El-Mesery, Mohamed and Rosenthal, Tina and Rauert-Wunderlich, Hilka and Schreder, Martin and St{\"u}hmer, Thorsten and Leich, Ellen and Schlosser, Andreas and Ehrenschwender, Martin and Wajant, Harald and Siegmund, Daniela}, title = {The NEDD8-activating enzyme inhibitor MLN4924 sensitizes a TNFR1+ subgroup of multiple myeloma cells for TNF-induced cell death}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1860-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226666}, year = {2019}, abstract = {The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase βTrCP. MLN4924 therefore inhibits also the βTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment.}, language = {en} } @unpublished{HennigPrustyKauferetal.2022, author = {Hennig, Thomas and Prusty, Archana B. and Kaufer, Benedikt and Whisnant, Adam W. and Lodha, Manivel and Enders, Antje and Thomas, Julius and Kasimir, Francesca and Grothey, Arnhild and Herb, Stefanie and J{\"u}rges, Christopher and Meister, Gunter and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {Selective inhibition of miRNA 1 processing by a herpesvirus encoded miRNA}, edition = {accepted version}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267862}, year = {2022}, abstract = {Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a thus far unknown cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the lytic-latent switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily drugable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.}, language = {en} } @article{BruennertSeupelGoyaletal.2023, author = {Br{\"u}nnert, Daniela and Seupel, Raina and Goyal, Pankaj and Bach, Matthias and Schraud, Heike and Kirner, Stefanie and K{\"o}ster, Eva and Feineis, Doris and Bargou, Ralf C. and Schlosser, Andreas and Bringmann, Gerhard and Chatterjee, Manik}, title = {Ancistrocladinium A induces apoptosis in proteasome inhibitor-resistant multiple myeloma cells: a promising therapeutic agent candidate}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {8}, issn = {1424-8247}, doi = {10.3390/ph16081181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362887}, year = {2023}, abstract = {The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.}, language = {en} } @article{RauschenbergerPiroKasaragodetal.2023, author = {Rauschenberger, Vera and Piro, Inken and Kasaragod, Vikram Babu and H{\"o}rlin, Verena and Eckes, Anna-Lena and Kluck, Christoph J. and Schindelin, Hermann and Meinck, Hans-Michael and Wickel, Jonathan and Geis, Christian and T{\"u}z{\"u}n, Erdem and Doppler, Kathrin and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation}, series = {Frontiers in Molecular Neuroscience}, volume = {16}, journal = {Frontiers in Molecular Neuroscience}, doi = {10.3389/fnmol.2023.1089101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304206}, year = {2023}, abstract = {Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @unpublished{BrennerZinkWitzingeretal.2024, author = {Brenner, Marian and Zink, Christoph and Witzinger, Linda and Keller, Angelika and Hadamek, Kerstin and Bothe, Sebastian and Neuenschwander, Martin and Villmann, Carmen and von Kries, Jens Peter and Schindelin, Hermann and Jeanclos, Elisabeth and Gohla, Antje}, title = {7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase}, series = {eLife}, journal = {eLife}, doi = {10.7554/eLife.93094.2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350446}, year = {2024}, abstract = {Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.}, language = {en} } @article{TessmerMargison2023, author = {Tessmer, Ingrid and Margison, Geoffrey P.}, title = {The DNA alkyltransferase family of DNA repair proteins: common mechanisms, diverse functions}, series = {International Journal of Molecular Sciences}, volume = {25}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms25010463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-355790}, year = {2023}, abstract = {DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O\(^6\)-alkylguanine and O\(^4\)-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O\(^6\)-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.}, language = {en} } @article{MeinertJessenHufnageletal.2024, author = {Meinert, Madlen and Jessen, Christina and Hufnagel, Anita and Kreß, Julia Katharina Charlotte and Burnworth, Mychal and D{\"a}ubler, Theo and Gallasch, Till and Da Xavier Silva, Thamara Nishida and Dos Santos, Anc{\´e}ly Ferreira and Ade, Carsten Patrick and Schmitz, Werner and Kneitz, Susanne and Friedmann Angeli, Jos{\´e} Pedro and Meierjohann, Svenja}, title = {Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner}, series = {Redox Biology}, volume = {70}, journal = {Redox Biology}, doi = {10.1016/j.redox.2023.103011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350328}, year = {2024}, abstract = {The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2.}, language = {en} } @article{KressJessenHufnageletal.2023, author = {Kreß, Julia Katharina Charlotte and Jessen, Christina and Hufnagel, Anita and Schmitz, Werner and Da Xavier Silva, Thamara Nishida and Ferreira Dos Santos, Anc{\´e}ly and Mosteo, Laura and Goding, Colin R. and Friedmann Angeli, Jos{\´e} Pedro and Meierjohann, Svenja}, title = {The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2}, series = {Cell Reports}, volume = {42}, journal = {Cell Reports}, number = {7}, doi = {10.1016/j.celrep.2023.112724}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350312}, year = {2023}, abstract = {Highlights • The integrated stress response leads to a general ATF4-dependent activation of NRF2 • ATF4 causes a CHAC1-dependent GSH depletion, resulting in NRF2 stabilization • An elevation of NRF2 transcript levels fosters this effect • NRF2 supports the ISR/ATF4 pathway by improving cystine and antioxidant supply Summary The redox regulator NRF2 becomes activated upon oxidative and electrophilic stress and orchestrates a response program associated with redox regulation, metabolism, tumor therapy resistance, and immune suppression. Here, we describe an unrecognized link between the integrated stress response (ISR) and NRF2 mediated by the ISR effector ATF4. The ISR is commonly activated after starvation or ER stress and plays a central role in tissue homeostasis and cancer plasticity. ATF4 increases NRF2 transcription and induces the glutathione-degrading enzyme CHAC1, which we now show to be critically important for maintaining NRF2 activation. In-depth analyses reveal that NRF2 supports ATF4-induced cells by increasing cystine uptake via the glutamate-cystine antiporter xCT. In addition, NRF2 upregulates genes mediating thioredoxin usage and regeneration, thus balancing the glutathione decrease. In conclusion, we demonstrate that the NRF2 response serves as second layer of the ISR, an observation highly relevant for the understanding of cellular resilience in health and disease.}, language = {en} } @techreport{OPUS4-35963, title = {Platelets - Molecular, cellular and systemic functions in health and disease}, editor = {Nieswandt, Bernhard}, organization = {Collaborative Research Centre/Transregio 240}, doi = {10.25972/OPUS-35963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359636}, pages = {25}, year = {2024}, abstract = {Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states.}, subject = {Thrombozyt}, language = {en} } @article{LiuFriedrichHemmenetal.2023, author = {Liu, Ruiqi and Friedrich, Mike and Hemmen, Katherina and Jansen, Kerstin and Adolfi, Mateus C. and Schartl, Manfred and Heinze, Katrin G.}, title = {Dimerization of melanocortin 4 receptor controls puberty onset and body size polymorphism}, series = {Frontiers in Endocrinology}, volume = {14}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2023.1267590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354261}, year = {2023}, abstract = {Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by F{\"o}rster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.}, language = {en} } @phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{NishidaXavierdaSilvaSchulteNunesAlvesetal.2023, author = {Nishida Xavier da Silva, Thamara and Schulte, Clemens and Nunes Alves, Ariane and Maric, Hans Michael and Friedmann Angeli, Jos{\´e} Pedro}, title = {Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules}, series = {Cell Death \& Disease}, volume = {14}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-023-05787-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357943}, year = {2023}, abstract = {Ferroptosis is a form of cell death characterized by phospholipid peroxidation, where numerous studies have suggested that the induction of ferroptosis is a therapeutic strategy to target therapy refractory cancer entities. Ferroptosis suppressor protein 1 (FSP1), an NAD(P)H-ubiquinone reductase, is a key determinant of ferroptosis vulnerability, and its pharmacological inhibition was shown to strongly sensitize cancer cells to ferroptosis. A first generation of FSP1 inhibitors, exemplified by the small molecule iFSP1, has been reported; however, the molecular mechanisms underlying inhibition have not been characterized in detail. In this study, we explore the species-specific inhibition of iFSP1 on the human isoform to gain insights into its mechanism of action. Using a combination of cellular, biochemical, and computational methods, we establish a critical contribution of a species-specific aromatic architecture that is essential for target engagement. The results described here provide valuable insights for the rational development of second-generation FSP1 inhibitors combined with a tracer for screening the druggable pocket. In addition, we pose a cautionary notice for using iFSP1 in animal models, specifically murine models.}, language = {en} } @article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @phdthesis{WeigelverhHoffmann2024, author = {Weigel [verh. Hoffmann], Mathis Leonard}, title = {Thrombozytenfunktionsanalyse als potenzielles Instrument zur Fr{\"u}herkennung von Sepsis}, doi = {10.25972/OPUS-35819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Sepsis ist ein h{\"a}ufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsst{\"o}rung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine fr{\"u}hzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung f{\"u}r das {\"U}berleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgepr{\"a}gte Hyporeaktivit{\"a}t der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Fr{\"u}herkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsst{\"o}rung wurden im Rahmen der vorliegenden Arbeit zus{\"a}tzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Ph{\"a}notypische Auff{\"a}lligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine ver{\"a}nderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verst{\"a}rktes Rezeptor-Shedding hindeutet; (ii) ein ausgepr{\"a}gtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endst{\"a}ndig gebundener Sialins{\"a}ure im Sinne einer verst{\"a}rkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgepr{\"a}gte generalisierte Hyporeaktivit{\"a}t gegen{\"u}ber multiplen Agonisten, die abgeschw{\"a}cht bereits bei Infektion nachweisbar war und gem{\"a}ß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 f{\"u}r alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkr{\"a}fte eine normale bis gar beschleunigte Aggregation. Die Reaktivit{\"a}tsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker f{\"u}r die Sepsis-Fr{\"u}herkennung dar. F{\"u}r weitere Schlussfolgerungen ist jedoch eine gr{\"o}ßere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen ph{\"a}notypischen und funktionellen Auff{\"a}lligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden.}, subject = {Sepsis}, language = {de} } @phdthesis{Neagoe2024, author = {Neagoe, Raluca Alexandra Iulia}, title = {Development of techniques for studying the platelet glycoprotein receptors GPVI and GPIb localisation and signalling}, doi = {10.25972/OPUS-31306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313064}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Platelets play an important role in haemostasis by mediating blood clotting at sites of blood vessel damage. Platelets, also participate in pathological conditions including thrombosis and inflammation. Upon vessel damage, two glycoprotein receptors, the GPIb-IX-V complex and GPVI, play important roles in platelet capture and activation. GPIb-IX-V binds to von Willebrand factor and GPVI to collagen. This initiates a signalling cascade resulting in platelet shape change and spreading, which is dependent on the actin cytoskeleton. This thesis aimed to develop and implement different super-resolution microscopy techniques to gain a deeper understanding of the conformation and location of these receptors in the platelet plasma membrane, and to provide insights into their signalling pathways. We suggest direct stochastic optical reconstruction microscopy (dSTORM) and structured illumination microscopy (SIM) as the best candidates for imaging single platelets, whereas expansion microscopy (ExM) is ideal for imaging platelets aggregates. Furthermore, we highlighted the role of the actin cytoskeleton, through Rac in GPVI signalling pathway. Inhibition of Rac, with EHT1864 in human platelets induced GPVI and GPV, but not GPIbα shedding. Furthermore, EHT1864 treatment did not change GPVI dimerisation or clustering, however, it decreased phospholipase Cγ2 phosphorylation levels, in human, but not murine platelets, highlighting interspecies differences. In summary, this PhD thesis demonstrates that; 1) Rac alters GPVI signalling pathway in human but not mouse platelets; 2) our newly developed ExM protocol can be used to image platelet aggregates labelled with F(ab') fragments}, subject = {Platelet-Membranglykoprotein p62}, language = {en} } @article{Rasmussen2023, author = {Rasmussen, Tim}, title = {The potassium efflux system Kef: bacterial protection against toxic electrophilic compounds}, series = {Membranes}, volume = {13}, journal = {Membranes}, number = {5}, issn = {2077-0375}, doi = {10.3390/membranes13050465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313686}, year = {2023}, abstract = {Kef couples the potassium efflux with proton influx in gram-negative bacteria. The resulting acidification of the cytosol efficiently prevents the killing of the bacteria by reactive electrophilic compounds. While other degradation pathways for electrophiles exist, Kef is a short-term response that is crucial for survival. It requires tight regulation since its activation comes with the burden of disturbed homeostasis. Electrophiles, entering the cell, react spontaneously or catalytically with glutathione, which is present at high concentrations in the cytosol. The resulting glutathione conjugates bind to the cytosolic regulatory domain of Kef and trigger activation while the binding of glutathione keeps the system closed. Furthermore, nucleotides can bind to this domain for stabilization or inhibition. The binding of an additional ancillary subunit, called KefF or KefG, to the cytosolic domain is required for full activation. The regulatory domain is termed K+ transport-nucleotide binding (KTN) or regulator of potassium conductance (RCK) domain, and it is also found in potassium uptake systems or channels in other oligomeric arrangements. Bacterial RosB-like transporters and K+ efflux antiporters (KEA) of plants are homologs of Kef but fulfill different functions. In summary, Kef provides an interesting and well-studied example of a highly regulated bacterial transport system.}, language = {en} } @article{GoeritzerKuentzelBecketal.2023, author = {Goeritzer, Madeleine and Kuentzel, Katharina B. and Beck, Sarah and Korbelius, Melanie and Rainer, Silvia and Bradić, Ivan and Kolb, Dagmar and Mussbacher, Marion and Schrottmaier, Waltraud C. and Assinger, Alice and Schlagenhauf, Axel and Rost, Ren{\´e} and Gottschalk, Benjamin and Eichmann, Thomas O. and Z{\"u}llig, Thomas and Graier, Wolfgang F. and Vujić, Nemanja and Kratky, Dagmar}, title = {Monoglyceride lipase deficiency is associated with altered thrombogenesis in mice}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms24043116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304052}, year = {2023}, abstract = {Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl\(^{-/-}\)) and platelet-specific Mgl-deficient (platMgl\(^{-/-}\)) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl\(_3\)-induced injury was markedly reduced in Mgl\(^{-/-}\) mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl\(^{-/-}\) mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl\(^{-/-}\) mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.}, language = {en} } @phdthesis{Brown2023, author = {Brown, Helena Charlotte}, title = {Investigating the role of the platelet receptor C-type lectin-like receptor 2 in models of thrombosis}, doi = {10.25972/OPUS-29310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets have a key physiological role in haemostasis however, inappropriate thrombus formation can lead to cardiovascular diseases such as myocardial infarction or stroke. Although, such diseases are common worldwide there are comparatively few anti-platelet drugs, and these are associated with an increased risk of bleeding. Platelets also have roles in thrombo-inflammation, immuno-thrombosis and cancer, in part via C-type lectin-like receptor 2 (CLEC-2) and its ligand podoplanin. Although CLEC-2 contributes to these diseases in mice, as well as to thrombus stability, it is unclear whether CLEC-2 has similar roles in humans, particularly as human CLEC-2 (hCLEC-2) cannot be investigated experimentally in vivo. To investigate hCLEC-2 in vivo, we generated a humanised CLEC-2 mouse (hCLEC-2KI) model, as well as a novel monoclonal antibody, HEL1, that binds to a different site than an existing antibody, AYP1. Using these antibodies, we have provided proof of principle for the use of hCLEC-2KI mice to test potential therapeutics targeting hCLEC-2, and shown for the first time that hCLEC-2 can be immunodepleted, with little effect on haemostasis. However, our results have also suggested that there are species differences in the role of CLEC-2 in arterial thrombosis. We further confirmed this using human blood where blocking CLEC-2 ligand binding had no effect on thrombosis, whereas we confirmed a minor role for mouse CLEC-2 in thrombus stability. We also investigated the effect of blocking CLEC-2 signalling using the Bruton's tyrosine kinase inhibitor PRN473 on CLEC-2 mediated immuno-thrombosis in a Salmonella typhimurium infection model. However, no effect on thrombosis was observed suggesting that CLEC-2 signalling is not involved. Overall, our results suggest that there may be differences in the role of human and mouse CLEC-2, at least in arterial thrombosis, which could limit the potential of CLEC-2 as an anti-thrombotic target. However, it appears that the interaction between CLEC-2 and podoplanin is conserved and therefore CLEC-2 could still be a therapeutic target in immuno-thrombosis, thrombo-inflammation and cancer. Furthermore, any potential human specific therapeutics could be investigated in vivo using hCLEC-2KI mice.}, subject = {Thrombozyt}, language = {en} } @article{SchwanLangSchlosseretal.2022, author = {Schwan, Carsten and Lang, Alexander E. and Schlosser, Andreas and Fujita-Becker, Setsuko and AlHaj, Abdulatif and Schr{\"o}der, Rasmus R. and Faix, Jan and Aktories, Klaus and Mannherz, Hans Georg}, title = {Inhibition of Arp2/3 complex after ADP-ribosylation of Arp2 by binary Clostridioides toxins}, series = {Cells}, volume = {11}, journal = {Cells}, number = {22}, issn = {2073-4409}, doi = {10.3390/cells11223661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297454}, year = {2022}, abstract = {Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.}, language = {en} } @phdthesis{PaciosMichelena2023, author = {Pacios Michelena, Anabel}, title = {Molecular insights into the complex formed by the actin cytoskeleton related protein VASP and the inhibitory postsynaptic scaffolding protein gephyrin}, doi = {10.25972/OPUS-21337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213373}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Gephyrin is a 93 kDa moonlighting protein, which is involved in the last two steps of the molybdenum cofactor (Moco) biosynthesis pathway while at the same time playing a central role in the anchoring, clustering and stabilization of glycine receptors (GlyRs) ...}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{DieboldSchoenemannEilersetal.2023, author = {Diebold, Mathias and Sch{\"o}nemann, Lars and Eilers, Martin and Sotriffer, Christoph and Schindelin, Hermann}, title = {Crystal structure of a covalently linked Aurora-A-MYCN complex}, series = {Acta Crystallographica}, volume = {D79}, journal = {Acta Crystallographica}, doi = {10.1107/s2059798322011433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318855}, pages = {1 -- 9}, year = {2023}, abstract = {Formation of the Aurora-A-MYCN complex increases levels of the oncogenic transcription factor MYCN in neuroblastoma cells by abrogating its degradation through the ubiquitin proteasome system. While some small-molecule inhibitors of Aurora-A were shown to destabilize MYCN, clinical trials have not been satisfactory to date. MYCN itself is considered to be `undruggable' due to its large intrinsically disordered regions. Targeting the Aurora-A-MYCN complex rather than Aurora-A or MYCN alone will open new possibilities for drug development and screening campaigns. To overcome the challenges that a ternary system composed of Aurora-A, MYCN and a small molecule entails, a covalently cross-linked construct of the Aurora-A-MYCN complex was designed, expressed and characterized, thus enabling screening and design campaigns to identify selective binders.}, language = {en} } @phdthesis{GoebneeKlaus2023, author = {G{\"o}b [n{\´e}e Klaus], Vanessa Aline Domenica}, title = {Pathomechanisms underlying ischemic stroke}, doi = {10.25972/OPUS-28672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Every year, stroke affects over 100 million people worldwide and the number of cases continues to grow. Ischemic stroke is the most prevalent form of stroke and rapid restoration of blood flow is the primary therapeutic aim. However, recanalization might fail or reperfusion itself induces detrimental processes leading to infarct progression. Previous studies identified platelets and immune cells as drivers of this so-called ischemia/reperfusion (I/R) injury, establishing the concept of ischemic stroke as thrombo-inflammatory disease. Reduced cerebral blood flow despite recanalization promoted the hypothesis that thrombus formation within the cerebral microcirculation induces further tissue damage. The results presented in this thesis refute this: using complementary methodologies, it was shown that infarct growth precedes the occurrence of thrombi excluding them as I/R injury-underlying cause. Blood brain barrier disruption is one of the hallmarks of ischemic stroke pathology and was confirmed as early event during reperfusion injury in the second part of this study. Abolished platelet α-granule release protects mice from vascular leakage in the early reperfusion phase resulting in smaller infarcts. Using in vitro assays, platelet α-granule-derived PDGF-AB was identified as one factor contributing to blood-brain barrier disruption. In vivo visualization of platelet activation would provide important insights in the spatio-temporal context of platelet activation in stroke pathology. As platelet signaling results in elevated intracellular Ca2+ levels, this is an ideal readout. To overcome the limitations of chemical calcium indicators, a mouse line expressing an endogenous calcium reporter specifically in platelets and megakaryocytes was generated. Presence of the reporter did not interfere with platelet function, consequently these mice were characterized in in vivo and ex vivo models. Upon ischemic stroke, neutrophils are among the first cells that are recruited to the brain. Since for neutrophils both, beneficial and detrimental effects are described, their role was investigated within this thesis. Neither neutrophil depletion nor absence of NADPH-dependent ROS production (Ncf-/- mice) affected stroke outcome. In contrast, abolished NET-formation in Pad4-/- mice resulted in reduced infarct sizes, revealing detrimental effects of NETosis in the context of ischemic stroke, which might become a potential therapeutic target. Cerebral venous (sinus) thrombosis, CV(S)T is a rare type of stroke with mainly idiopathic onset. Whereas for arterial thrombosis a critical contribution of platelets is known and widely accepted, for venous thrombosis this is less clear but considered more and more. In the last part of this thesis, it was shown that fab-fragments of the anti-CLEC-2 antibody INU1 trigger pathological platelet activation in vivo, resulting in foudroyant CVT accompanied by heavy neurological symptoms. Using this novel animal model for CVT, cooperative signaling of the two platelet receptors CLEC-2 and GPIIb/IIIa was revealed as major trigger of CVT and potential target for treatment.}, subject = {Schlaganfall}, language = {en} } @article{NeagoeGardinerStegneretal.2022, author = {Neagoe, Raluca A. I. and Gardiner, Elizabeth E. and Stegner, David and Nieswandt, Bernhard and Watson, Steve P. and Poulter, Natalie S.}, title = {Rac inhibition causes impaired GPVI signalling in human platelets through GPVI shedding and reduction in PLCγ2 phosphorylation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284350}, year = {2022}, abstract = {Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1's mode of action differs between the two species.}, language = {en} } @article{KooMatthewsHarrisonetal.2022, author = {Koo, Chek Ziu and Matthews, Alexandra L. and Harrison, Neale and Szyroka, Justyna and Nieswandt, Bernhard and Gardiner, Elizabeth E. and Poulter, Natalie S. and Tomlinson, Michael G.}, title = {The platelet collagen receptor GPVI is cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 molecular scissors}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284468}, year = {2022}, abstract = {The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a 'molecular scissor' that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{NavarroStegnerNieswandtetal.2021, author = {Navarro, Stefano and Stegner, David and Nieswandt, Bernhard and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E.}, title = {Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284219}, year = {2021}, abstract = {In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.}, language = {en} } @phdthesis{Khayenko2023, author = {Khayenko, Vladimir}, title = {Functional peptide-based probes for the visualization of inhibitory synapses}, doi = {10.25972/OPUS-32043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Short functional peptidic probes can maximize the potential of high-end microscopy techniques and multiplex imaging assays and provide new insights into normal and aberrant molecular, cellular and tissue function. Particularly, the visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques and relies either on genetic manipulation or on antibodies that underperform in tissue immunofluorescence. Starting from an endogenous activity-related ligand of gephyrin, a universal marker of the inhibitory post-synapse, I developed a short peptidic multivalent binder with exceptional affinity and selectivity to gephyrin. By tailoring fluorophores to the binder, I have obtained Sylite, a probe for the visualization of inhibitory synapses, with an outstanding signal-to-background ratio, that bests the "gold standard" gephyrin antibodies both in selectivity and in tissue immunofluorescence. In tissue Sylite benefits from simplified handling, provides robust synaptic labeling in record-short time and, unlike antibodies, is not affected by staining artefacts. In super-resolution microscopy Sylite precisely localizes the post-synapse and enables accurate pre- to post-synapse measurements. Combined with complimentary tracing techniques Sylite reveals inhibitory connectivity and profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the periaqueductal gray brain region. Lastly, upon probe optimization for live cell application and with the help of novel thiol-reactive cell penetrating peptide I have visualized inhibitory synapses in living neurons. Taken together, my work provided a versatile probe for conventional and super-resolution microscopy and a workflow for the development and application of similar compact functional synthetic probes.}, subject = {Fluoreszenzsonde}, language = {en} } @article{VogelsangEichlerHuntemannetal.2021, author = {Vogelsang, Anna and Eichler, Susann and Huntemann, Niklas and Masanneck, Lars and B{\"o}hnlein, Hannes and Sch{\"u}ngel, Lisa and Willison, Alice and Loser, Karin and Nieswandt, Bernhard and Kehrel, Beate E. and Zarbock, Alexander and G{\"o}bel, Kerstin and Meuth, Sven G.}, title = {Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms22189915}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284535}, year = {2021}, abstract = {Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28\% in ASA-treated mice compared to 56.11 ± 1.46\% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.}, language = {en} } @phdthesis{Truongvan2023, author = {Truongvan, Ngoc}, title = {Understanding the dual specificity of UBA6}, doi = {10.25972/OPUS-24457}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Ubiquitylation is a protein post translational modification, in which ubiquitin is covalently attached to target protein substrates resulting in diverse cellular outcomes. Besides ubiquitin, various ubiquitin-like proteins including FAT10 exist, which are also conjugated to target proteins. The underlying modification mechanisms are conserved. In the initial step, ubiquitin or a ubiquitin-like protein is thioester-linked to a catalytic cysteine in the E1activating enzyme in an ATP-dependent manner. The respective protein modifier is then transferred to an E2 conjugating enzyme in a transthioesterification reaction. Finally, an E3 ubiquitin ligase E3 catalyzes the covalent attachment of the protein modifier to a substrate. In the case of ubiquitin, multiple ubiquitin molecules can be attached to a substrate in the form of either linear or branched polyubiquitin chains but also as single ubiquitin modifications. Depending on the nature of the ubiquitin chain, the substrates are destined to various cellular processes such as their targeted destruction by the proteasome but also non-degradative outcomes may occur. As stated above FAT10 is a ubiquitin-like protein modifier which typically targets proteins for proteasomal degradation. It consists of two ubiquitin-like domains and is mainly expressed in cells of the human immune system. The reported involvement of FAT10 modifications in cancers and other diseases has caught the attention of the scientific community as an inhibition of the FAT10ylation process may provide avenues for novel therapeutic approaches. UBA6 is the E1 activating enzyme that resides at the apex of the FAT10 proteasomal degradation pathway. UBA6 not only recognizes FAT10 but can also activate ubiquitin as efficiently as the ubiquitin specific E1 UBA1. The dual specificity of UBA6 may complicate the inhibition FAT10ylation since targeting the active site of UBA6 will also inhibit the UBA6-catalyzed ubiquitin activation. Therefore, it is important to understand the underlying principles for the dual specificity of UBA6 prior to the development of compounds interfering with FAT10ylation. In this thesis important novel insights into the structure and function of UBA6 were derived by X-ray crystallography and biochemical methods. The first crystal structure of UBA6 reveals the multidomain architecture of this enzyme in atomic detail. The enzyme is composed of a rigid core including its active and inactive adenylation domains as well as a 4 helix bundle. Overall, the molecule adopts a "Y" shape architecture with the core at the base and the first and second catalytic half domains forming one arm of the "Y" and the ubiquitin fold domain constituting the other arm. While UBA6 shares the same domain architecture as UBA1, substantial differences were revealed by the crystal structure. In particular, the first catalytic half domain undergoes a significant shift to a position more distal from the core. This rigid body movement is assumed to generate room to accommodate the second ubiquitin-like domain of FAT10. Differences are also observed in a hydrophobic platform between the core and the first catalytic half domain and the adenylation active site in the core, which together from the binding sites for ubiquitin and FAT10. Site directed mutagenesis of key residues in these areas altered the UBA6-catalyzed activation of ubiquitin and FAT10. UBA6 variants were generated with the goal of trying to block the activation of FAT10 while still maintaining that of ubiquitin activation, in order to fully explain the dual specificity of UBA6. However, none of these mutations could block the activation of FAT10, while some of these UBA6 variants blocked ubiquitin activation. Preliminary inhibition assays with a group of E1 inhibitors belonging to the adenosyl sulfamate family demonstrated potent inhibition of FAT10ylation for two compounds. The dual specificity of UBA6 hence needs to be further examined by biochemical and structural methods. In particular, the structure of a complex between UBA6 and ubiquitin or FAT10 would provide key insights for further biochemical studies, ultimately allowing the targeted inhibition of the FAT10ylation machinery.}, language = {en} } @article{MammadovaBachBraun2019, author = {Mammadova-Bach, Elmina and Braun, Attila}, title = {Zinc homeostasis in platelet-related diseases}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms20215258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285554}, year = {2019}, abstract = {Zn\(^{2+}\) deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn\(^{2+}\)-deficient diets, accounting for 1-4\% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn\(^{2+}\) deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn\(^{2+}\) status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn\(^{2+}\) uptake in the gut using different nutritional supplementation of Zn\(^{2+}\) could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn\(^{2+}\) diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn\(^{2+}\) in hemostasis. Storage protein metallothionein maintains or releases Zn\(^{2+}\) in the cytoplasm, and the dynamic change of this cytoplasmic Zn\(^{2+}\) pool is regulated by the redox status of the cell. An increase of labile Zn\(^{2+}\) pool can be toxic for the cells, and therefore cytoplasmic Zn\(^{2+}\) levels are tightly regulated by several Zn\(^{2+}\) transporters located on the cell surface and also on the intracellular membrane of Zn\(^{2+}\) storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn\(^{2+}\) is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn\(^{2+}\) transport and the physiological role of Zn\(^{2+}\) store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn\(^{2+}\) to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn\(^{2+}\) homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.}, language = {en} } @phdthesis{Imam2023, author = {Imam, Nasir}, title = {Molecular basis of collybistin conformational activation}, doi = {10.25972/OPUS-31145}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The nervous system relies on an orchestrated assembly of complex cellular entities called neurons, which are specifically committed to information management and transmission. Inter-neuronal communication takes place via synapses, membrane-membrane junctions which ensure efficient signal transfer. Synaptic neurotransmission involves release of presynaptic neurotransmitters and their reception by cognate receptors at postsynaptic terminals. Inhibitory neurotransmission is primarily mediated by the release of neurotransmitters GABA (γ-Aminobutyric acid) and glycine, which are precisely sensed by GABA type-A receptors (GABAARs) and glycine receptors (GlyRs), respectively. GABAAR assembly and maintenance is coordinated by various postsynaptic neuronal factors including the scaffolding protein gephyrin, the neuronal adaptor collybistin (CB) and cell adhesion proteins of the neuroligin (NL) family, specifically NL2 and NL4. At inhibitory postsynaptic specializations, gephyrin has been hypothesized to form extended structures underneath the plasma membrane, where its interaction with the receptors leads to their stabilization and impedes their lateral movement. Gephyrin mutations have been associated with various brain disorders, including autism, schizophrenia, Alzheimer's disease, and epilepsy. Furthermore, gephyrin loss is lethal and causes mice to die within the first post-natal day. Gephyrin recruitment from intracellular deposits to postsynaptic membranes primarily relies on the adaptor protein CB. As a moonlighting protein, CB, a guanine nucleotide exchange factor (GEF), also catalyzes a nucleotide exchange reaction, thereby regenerating the GTP-bound state of the small GTPase Cdc42 from its GDP-bound form. The CB gene undergoes alternative splicing with the majority of CB splice variants featuring an N-terminal SH3 domain followed by tandem Dbl-homology (DH) and pleckstrin-homology (PH) domains. Previous studies demonstrated that the most widely expressed, SH3-domain containing splice variant (CB2SH3+) preferentially adopts a closed conformation, in which the N-terminally located SH3 domain forms intra-molecular interaction with the DH-PH domain tandem. Previous cell-based studies indicated that SH3 domain-encoding CB variants remain untargeted and colocalize with intracellular gephyrin deposits and hence require additional factors which interact with the SH3 domain, thus inducing an open or active conformation. The SH3 domain-deficient CB isoform (CB2SH3-), on the contrary, adopts an open conformation, which possess enhanced postsynaptic gephyrin-clustering and also effectively replenishes the GTP-bound small GTPase-Cdc42 from its GDP-bound state. Despite the fundamental role of CB as a neuronal adaptor protein maintaining the proper function of inhibitory GABAergic synapses, its interactions with the neuronal scaffolding protein gephyrin and other post synaptic neuronal factors remain poorly understood. Moreover, CB interaction studies with the small GTPase Cdc42 and TC10, a closely related member of Cdc42 subfamily, remains poorly characterized. Most importantly, the roles of the neuronal factors and small GTPases in CB conformational activation have not been elucidated. This PhD dissertation primarily focuses on delineating the molecular basis of the interactions between CB and postsynaptic neuronal factors. During the course of my PhD dissertation, I engineered a series of CB FRET (F{\"o}rster Resonance Energy Transfer) sensors to characterize the CB interaction with its binding partners along with outlining their role in CB conformational activation. Through the aid of these CB FRET sensors, I analyzed the gephyrin-CB interaction, which, due to technical limitations remained unaddressed for more than two decades (refer Chapter 2 for more details). Subsequently, I also unraveled the molecular basis of the interactions between CB and the neuronal cell adhesion factor neuroligin 2 (refer chapter 2) and the small GTPases Cdc42 and TC10 (refer chapter 3) and describe how these binding partners induce a conformational activation of CB. In summary, this PhD dissertation provides strong evidence of a closely knit CB communication network with gephyrin, neuroligin and the small GTPase TC10, wherein CB activation from closed/inactive to open/active states is effectively triggered by these ligands.}, language = {en} } @article{TruongvanLiMisraetal.2022, author = {Truongvan, Ngoc and Li, Shurong and Misra, Mohit and Kuhn, Monika and Schindelin, Hermann}, title = {Structures of UBA6 explain its dual specificity for ubiquitin and FAT10}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-32040-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301161}, year = {2022}, abstract = {The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings.}, language = {en} } @article{SchulteSoldaSpaenigetal.2022, author = {Schulte, Clemens and Sold{\`a}, Alice and Sp{\"a}nig, Sebastian and Adams, Nathan and Bekić, Ivana and Streicher, Werner and Heider, Dominik and Strasser, Ralf and Maric, Hans Michael}, title = {Multivalent binding kinetics resolved by fluorescence proximity sensing}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, doi = {10.1038/s42003-022-03997-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301157}, year = {2022}, abstract = {Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures. High throughput synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric architectures combined with direct FPS measurements resolved on-rates, off-rates, and dissociation constants with high accuracy and low sample consumption compared to three complementary technologies. The dataset and its machine learning-based analysis deciphered the relationship of specific architectural features and binding kinetics and thereby identified binders with unprecedented protein inhibition capacity; thus, highlighting the value of FPS for the rational engineering of multivalent inhibitors.}, language = {en} } @unpublished{NeitzBessiKuperetal.2023, author = {Neitz, Hermann and Bessi, Irene and Kuper, Jochen and Kisker, Caroline and H{\"o}bartner, Claudia}, title = {Programmable DNA interstrand crosslinking by alkene-alkyne [2+2] photocycloaddition}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, edition = {submitted version}, doi = {10.1021/jacs.3c01611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311822}, year = {2023}, abstract = {Covalent crosslinking of DNA strands provides a useful tool for medical, biochemical and DNA nanotechnology applications. Here we present a light-induced interstrand DNA crosslinking reaction using the modified nucleoside 5-phenylethynyl-2'-deoxyuridine (\(^{Phe}\)dU). The crosslinking ability of \(^{Phe}\)dU was programmed by base pairing and by metal ion interaction at the Watson-Crick base pairing site. Rotation to intrahelical positions was favored by hydrophobic stacking and enabled an unexpected photochemical alkene-alkyne [2+2] cycloaddition within the DNA duplex, resulting in efficient formation of a \(^{Phe}\)dU-dimer after short irradiation times of a few seconds. A \(^{Phe}\)dU dimer-containing DNA was shown to efficiently bind a helicase complex, but the covalent crosslink completely prevented DNA unwinding, suggesting possible applications in biochemistry or structural biology.}, language = {en} } @article{NavarroStarkeHeemskerketal.2022, author = {Navarro, Stefano and Starke, Andreas and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E. and Stegner, David and Nieswandt, Bernhard}, title = {Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286227}, year = {2022}, abstract = {Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6\(^{tg/tg\)). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.}, language = {en} } @article{ImamChoudhuryHeinzeetal.2022, author = {Imam, Nasir and Choudhury, Susobhan and Heinze, Katrin G. and Schindelin, Hermann}, title = {Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10}, series = {Frontiers in Synaptic Neuroscience}, volume = {14}, journal = {Frontiers in Synaptic Neuroscience}, issn = {1663-3563}, doi = {10.3389/fnsyn.2022.959875}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282816}, year = {2022}, abstract = {Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABAA receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4\% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.}, language = {en} } @phdthesis{Aigner2023, author = {Aigner, Max}, title = {Establishing successful protocols and imaging pipelines for Expansion Microscopy in murine blood platelets}, doi = {10.25972/OPUS-30900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-309003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets play an important role in the body, since they are part of the hemostasis system, preventing and stopping blood loss. Nevertheless, when platelet or coagulation system function are impaired, uncontrolled bleedings but also irreversible vessel occlusion followed by ischemic tissue damage can occur. Therefore, understanding platelet function and activation, mechanisms which are controlled by a variety of platelet membrane receptors and other factors is important to advance out knowledge of hemostasis and platelet malfunction. For a complete picture of platelet function and their modulating behavior it is desired to be able to quantify receptor distributions and interactions of these densely packed molecular ensembles in the membrane. This challenges scientists for several reasons. Most importantly, platelets are microscopically small objects, challenging the spatial resolution of conventional light microscopy. Moreover, platelet receptors are highly abundant on the membrane so even super-resolution microscopy struggles with quantitative receptor imaging on platelets. With Expansion microscopy (ExM), a new super-resolution technique was introduced, allowing resolutions to achieve super-resolution without using a super-resolution microscope, but by combining a conventional confocal microscopy with a highly processed sample that has been expanded physically. In this doctoral thesis, I evaluated the potential of this technique for super-resolution platelet imaging by optimizing the sample preparation process and establishing an imaging and image processing pipeline for dual-color 3D images of different membrane receptors. The analysis of receptor colocalization using ExM demonstrated a clear superiority compared to conventional microscopy. Furthermore, I identified a library of fluorescently labeled antibodies against different platelet receptors compatible with ExM and showed the possibility of staining membrane receptors and parts of the cytoskeleton at the same time.}, subject = {Mikroskopie}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{FusiPaudelMederetal.2022, author = {Fusi, Lorenza and Paudel, Rupesh and Meder, Katharina and Schlosser, Andreas and Schrama, David and Goebeler, Matthias and Schmidt, Marc}, title = {Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP modulates gene expression and apoptosis}, series = {Journal of Biological Chemistry}, volume = {298}, journal = {Journal of Biological Chemistry}, number = {3}, doi = {10.1016/j.jbc.2022.101714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299820}, year = {2022}, abstract = {Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain-associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27\(^{kip1}\) and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO-TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.}, language = {en} } @article{BotheHaenzelmannBoehleretal.2022, author = {Bothe, Sebastian and H{\"a}nzelmann, Petra and B{\"o}hler, Stephan and Kehrein, Josef and Zehe, Markus and Wiedemann, Christoph and Hellmich, Ute A. and Brenk, Ruth and Schindelin, Hermann and Sotriffer, Christoph}, title = {Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97}, series = {Communications Chemistry}, volume = {5}, journal = {Communications Chemistry}, number = {1}, doi = {10.1038/s42004-022-00782-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300821}, year = {2022}, abstract = {Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.}, language = {en} } @article{BalakrishnanHemmenChoudhuryetal.2022, author = {Balakrishnan, Ashwin and Hemmen, Katherina and Choudhury, Susobhan and Krohn, Jan-Hagen and Jansen, Kerstin and Friedrich, Mike and Beliu, Gerti and Sauer, Markus and Lohse, Martin J. and Heinze, Katrin G.}, title = {Unraveling the hidden temporal range of fast β2-adrenergic receptor mobility by time-resolved fluorescence}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-022-03106-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301140}, year = {2022}, abstract = {G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β\(_{2}\)-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm\(^{2}\)/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbr{\"u}ck model.}, language = {en} } @phdthesis{Nordblom2023, author = {Nordblom, Noah Frieder}, title = {Synthese und Evaluation von Gephyrinsonden f{\"u}r hochaufl{\"o}sende Mikroskopieverfahren}, doi = {10.25972/OPUS-30230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This decade saw the development of new high-end light microscopy approaches. These technologies are increasingly used to expand our understanding of cellular function and the molecular mechanisms of life and disease. The precision of state-of-the-art super resolution microscopy is limited by the properties of the applied fluorescent label. Here I describe the synthesis and evaluation of new functional fluorescent probes that specifically stain gephyrin, universal marker of the neuronal inhibitory post-synapse. Selected probe precursor peptides were synthesised using solid phase peptide synthesis and conjugated with selected super resolution capable fluorescent dyes. Identity and purity were defined using chromatography and mass spectrometric methods. To probe the target specificity of the resulting probe variants in cellular context, a high-throughput assay was established. The established semi-automated and parallel workflow was used for the evaluation of three selected probes by defining their co-localization with the expressed fluorescent target protein. My work provided NN1Dc and established the probe as a visualisation tool for essentially background-free visualisation of the synaptic marker protein gephyrin in a cellular context. Furthermore, NN1DA became part of a toolbox for studying the inhibitory synapse ultrastructure and brain connectivity and turned out useful for the development of a label-free, high-throughput protein interaction quantification assay.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{KlenkHommersLohse2022, author = {Klenk, Christoph and Hommers, Leif and Lohse, Martin J.}, title = {Proteolytic cleavage of the extracellular domain affects signaling of parathyroid hormone 1 receptor}, series = {Frontiers in Endocrinology}, volume = {13}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2022.839351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262055}, year = {2022}, abstract = {Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to G\(_s\) and increased activation of G\(_q\) compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity, and that its cleavage affects receptor signaling.}, language = {en} }