@phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @phdthesis{Bakirci2024, author = {Bakirci, Ezgi}, title = {Development of \(In\) \(vitro\) Models for Tissue Engineering Applications Using a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-25164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In vitro models mimic the tissue-specific anatomy and play essential roles in personalized medicine and disease treatments. As a sophisticated manufacturing technology, 3D printing overcomes the limitations of traditional technologies and provides an excellent potential for developing in vitro models to mimic native tissue. This thesis aims to investigate the potential of a high-resolution 3D printing technology, melt electrowriting (MEW), for fabricating in vitro models. MEW has a distinct capacity for depositing micron size fibers with a defined design. In this thesis, three approaches were used, including 1) extending the MEW polymer library for different biomedical applications, 2) developing in vitro models for evaluation of cell growth and migration toward the different matrices, and 3) studying the effect of scaffold designs and biochemical cues of microenvironments on cells. First, we introduce the MEW processability of (AB)n and (ABAC)n segmented copolymers, which have thermally reversible network formulation based on physical crosslinks. Bisurea segments are combined with hydrophobic poly(dimethylsiloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments to form the (AB)n segmented copolymers. (ABAC)n segmented copolymers contain all three segments: in addition to bisurea, both hydrophobic and hydrophilic segments are available in the same polymer chain, resulting in tunable mechanical and biological behaviors. MEW copolymers either support cells attachment or dissolve without cytotoxic side effects when in contact with the polymers at lower concentrations, indicating that this copolymer class has potential in biological applications. The unique biological and surface properties, transparency, adjustable hydrophilicity of these copolymers could be beneficial in several in vitro models. The second manuscript addresses the design and development of a melt electrowritten competitive 3D radial migration device. The approach differs from most of the previous literature, as MEW is not used here to produce cell invasive scaffolds but to fabricate an in vitro device. The device is utilized to systematically determine the matrix which promotes cell migration and growth of glioblastoma cells. The glioblastoma cell migration is tested on four different Matrigel concentrations using a melt electrowritten radial device. The glioblastoma U87 cell growth and migration increase at Matrigel concentrations 6 and 8 mg mL-1 In the development of this radial device, the accuracy, and precision of melt electrowritten circular shapes were investigated. The results show that the printing speed and design diameter are essential parameters for the accuracy of printed constructs. It is the first instance where MEW is used for the production of in vitro devices. The influence of biochemical cues and scaffold designs on astrocytes and glioblastoma is investigated in the last manuscript. A fiber comprising the box and triangle-shaped pores within MEW scaffolds are modified with biochemical cues, including RGD and IKVAV peptides using a reactive NCO-sP(EO-stat-PO) macromer. The results show that astrocytes and glioblastoma cells exhibit different phenotypes on scaffold designs and peptide-coated scaffolds.}, subject = {3D-Druck}, language = {en} } @phdthesis{Kade2023, author = {Kade, Juliane Carolin}, title = {Expanding the Processability of Polymers for a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-27005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270057}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis identifies how the printing conditions for a high-resolution additive manufacturing technique, melt electrowriting (MEW), needs to be adjusted to process electroactive polymers (EAPs) into microfibers. Using EAPs based on poly(vinylidene difluoride) (PVDF), their ability to be MEW-processed is studied and expands the list of processable materials for this technology.}, subject = {Polymere}, language = {en} } @phdthesis{Boehm2023, author = {B{\"o}hm, Christoph}, title = {Thermal Stability of the Polyesters PCL and PLGA during Melt Electrowriting}, doi = {10.25972/OPUS-30613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this thesis was to investigate how PCL and PLGA react to the heat exposure that comes with the MEW process over a defined timespan. To assess the thermal stability of PCL during MEW over 25 d, an automated collection of fibers has been used to determine the CTS on each day of heating for three different temperatures. PCL is exceptionally stable over 25 d at 75 °C, whereas for 85 °C and 95 °C a slight upward trend during the last 10 d could be observed, which is an indication for thermal degradation. Same trend could be observed for diameter of fibers produced at a fixed collector speed. For all temperatures, CTS during the first 5 d decreased due to inhomogeneities of the melt. Physical analysis of the fibers by XRD and mechanical testing showed no significant changes. To investigate the chemical details of the thermal durability, PCL was artificially aged over 25 d at 75 °C, 85 °C and 95 °C. Data from GPC analysis and rheology revealed that PCL is degrading steadily at all three temperatures. Combined with GC-MS analysis, two different mechanisms for degradation could be observed: random chain scission and unzipping. Additional GPC experiment using a mixture of PCL and a fluorescence labelled PCL showed that PCL was undergoing ester interchange reactions, which could explain its thermal stability. PLGA was established successfully as material for MEW. GPC results revealed that PLGA degraded heavily in the one-hour preheating period. To reduce the processing temperature, ATEC was blended with PLGA in three mixtures. This slowed down degradation and a processing window of 6 h could be established. Mechanical testing with fibers produced with PLGA and all three blends was performed. PLGA was very brittle, whereas the blends showed an elastic behavior. This could be explained by ester interchange reactions that formed a loosely crosslinked network with ATEC.}, subject = {Degradation}, language = {en} } @phdthesis{Weigl2023, author = {Weigl, Franziska}, title = {Correlation of FluidFM® Technology and Fluorescence Microscopy for the Visualization of Cellular Detachment Steps}, doi = {10.25972/OPUS-29876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298763}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion.}, language = {en} } @phdthesis{Forster2023, author = {Forster, Leonard}, title = {Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells}, doi = {10.25972/OPUS-29860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.}, language = {en} } @article{LambergerZainuddinScheibeletal.2023, author = {Lamberger, Zan and Zainuddin, Shakir and Scheibel, Thomas and Lang, Gregor}, title = {Polymeric Janus Fibers}, series = {ChemPlusChem}, volume = {88}, journal = {ChemPlusChem}, number = {2}, doi = {10.1002/cplu.202200371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318516}, year = {2023}, abstract = {Janus fibers are a class of composite materials comprising mechanical and chemical to biological functionality. Combining different materials and functionalities in one micro- or even nanoscale fiber enables otherwise unreachable synergistic physicochemical effects with unprecedented opportunities for technical or biomedical applications. Here, recent developments of processing technologies and applications of polymeric Janus fibers will be reviewed. Various examples in the fields of textiles, catalysis, sensors as well as medical applications, like drug delivery systems, tissue engineering and antimicrobial materials, are presented to illuminate the outstanding potential of such high-end functional materials for novel applications in the upcoming future.}, language = {en} } @phdthesis{Holzmeister2023, author = {Holzmeister, Ib}, title = {Branched silica precursors as additives for mineral bone cements}, doi = {10.25972/OPUS-27504}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Mineral biocements are brittle materials, which usually results in catastrophic failure during mechanical loading. Here, previous works demonstrated the feasibility of reducing brittleness by a dual-setting approach, in which a silica sol was simultaneously gelled during the setting of a brushite forming cement. The current thesis aimed at further improving this concept by both using a novel silicate based cement matrix for an enhanced bonding between cement and silica matrix as well as multifunctional silica precursors to increase the network density of the gel. Due to its well-known biocompatibility and osteogenic regeneration capacity, baghdadite was chosen as mineral component of such composites. This required in a first approach the conversion of baghdadite ceramics into self-setting cement formulations. This was investigated initially by using baghdadite as reactive filler in a brushite forming cement (Chapter 4). Here, the ß-TCP component in a equimolar mixture of ß-TCP and acidic monocalcium phosphate anhydrous was subsequently replaced by baghdadite at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt\%) to study the influence on physicochemical cement properties such as mechanical performance, radiopacity, phase composition and microstructure. X-ray diffraction profiles demonstrated the dissolution of baghdadite during the cement reaction without affecting the crystal structure of the precipitated brushite phase. In addition, EDX analysis showed that calcium is homogeneously distributed in the cement matrix, while zirconium and silicon form cluster-like aggregates ranging in size from a few micrometers to more than 50 µm. X-ray images and µ-CT analyses indicate improved X-ray visibility with increased incorporation of baghdadite in brushite cement, with an aluminum equivalent thickness nearly doubling at a baghdadite content of 50 wt\%. At the same time, the compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa at a baghdadite content of 10 wt\%. Cell culture medium conditioned with powdered brushite cement approached physiological pH values when increasing amounts of baghdadite were added to the cement (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt\% baghdadite substitution). Baghdadite substitution also affected the ion content in the culture medium and thus the proliferation activity of primary human osteoblasts in vitro. The results demonstrated for the first time the suitability of baghdadite as a reactive cement additive for improving the radiopacity, mechanical performance, and cytocompatibility of brushite cements. A second approach (Chapter 5) aimed to produce single component baghdadite cements by an increase of baghdadite solubility to initiate a self-setting cement reaction. For this, the material was mechanically activated by longer grinding times of up to 24h leading to both a decrease in particle and crystallite size as well as a partial amorphization of baghdadite. Baghdadite cements were formed by adding water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were determined to be ~2 MPa after 3 days of setting for a 24-hour ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of the set cements, with preferential dissolution of calcium and only minor release of zirconium ions. Cement formation occurs under alkaline conditions, with the unground raw powder resulting in a pH of 11.9 during setting, while prolonged grinding increases the pH to about 12.3. Finally, mechanically activated baghdadite cements were combined with inorganic silica networks (Chapter 6) to create dual-setting cements with a further improvement of mechanical performance. While a modification of the cement pastes with a TEOS derived sol was already thought to improve strength, it was hypothesized that using multi-arm silica precursors can further enhance their mechanical performance due to a higher network density. In addition, this should also reduce pore size of both gels and cement and hence will be able to adjust the release kinetics of incorporated drugs. For this, multi-armed silica precursors were synthesized by the reaction of various multivalent alcohols (ethylene glycol, glycerine, pentaerythrit) with an isocyanate modified silica precursor. After hydrolysis under acidic conditions, the sols were mixed with baghdadite cement powders in order to allow a simultaneous gel formation and cement setting. Since the silica monomers have a high degree of linkage sites, this resulted in a branched network that interpenetrated with the growing cement crystals. In addition to minor changes in the crystalline phase composition as determined by X-ray diffraction, the novel composites exhibited improved mechanical properties with up to 20 times higher compressive strength and further benefit from an about 50\% lower overall porosity than the reference pure baghdadite cement. In addition, the initial burst release of the model drug vancomycin was completely inhibited by the added silica matrix. This observation was verified by testing for the antimicrobial activity with Staphylococcus aureus by measuring the inhibition zones of selected samples after 24 h and 48 h, whereas the antimicrobial effectiveness of a constant vancomycin release could be demonstrated. The current thesis clearly demonstrated the high potential of baghdadite as a cement formulation for medical application. The initially poor mechanical properties of such cements can be overcome by special processing techniques or by combination with silica networks. The achieved mechanical performance is > 10 MPa and hence suitable for bone replacement under non-load bearing conditions. The high intrinsic radiopacity as well as the alkaline pH during setting may open the way ahead to further dental applications, e.g. as root canal sealers or filler in dental composites. Here, the high pH is thought to lead to antimicrobial properties of such materials similar to commonly applied calcium hydroxide or calcium silicates, however combined with an intrinsic radiopacity for X-ray imaging. This would simplify such formulations to single component materials which are less susceptible to demixing processes during transport, storage or processing.}, subject = {Zement}, language = {en} } @phdthesis{Weichhold2023, author = {Weichhold, Jan Lukas}, title = {Injectable calcium phosphate-based bone replacement cements}, doi = {10.25972/OPUS-32661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The human body has very good self-healing capabilities for numerous different injuries to a variety of different tissues. This includes the main human mechanical framework, the skeleton. The skeleton is limited in its healing without additional aid by medicine mostly by the defect size. When the defect reaches a size above 2.5 cm the regeneration of the defect ends up faulty. Here is where implants, defect fillers and other support approaches developed in medicine can help the body to heal the big defect still successfully. Usually sturdy implants (auto-/allo-/xenogenic) are implanted in the defect to bridge the distance, but for auto- and allogenic implants a suitable donor site must be found and for all sources the implant needs to be shaped into the defect specific site to ensure a perfect fit, the best support and good healing. This shaping is very time consuming and prone to error, already in the planning phase. The use of a material that is moldable and sets in the desired shape shortly after applying negates these disadvantages. Cementitious materials offer exactly this property by being in a pasty stage after the powder and liquid components have been mixed and the subsequently hardening to a solid implant. These properties also enable the extrusion, and therefore may also enable the injection, of the cement via a syringe in a minimal invasive approach. To enable a good injection of the cement modifications are necessary. This work aimed to modify commonly used calcium phosphate-based cement systems based on α-TCP (apatitic) and β-TCP (brushitic). These have been modified with sodium phytate and phytic acid, respectively. Additionally, the α-TCP system has been modified with sodium pyrophosphate, in a second study, to create a storable aqueous paste that can be activated once needed with a highly concentrated sodium orthophosphate solution. The powder phase of the α-TCP cement system consisted of nine parts α-TCP and one part CDHA. These were prepared to have different particle sizes and therefore enable a better powder flowability through the bimodal size distribution. α-TCP had a main particle size of 20 μm and CDHA of 2.6 μm. The modification with sodium phytate led to an adsorption of phytate ions on the surface of the α-TCP particles, where they started to form complexes with the Ca2+ ions in the solution. This adsorption had two effects. The first was to make the calcium ions unavailable, preventing supersaturation and ultimately the precipitation of CDHA what would lead to the cement hardening. The second was the increase of the absolute value of the surface charge, zeta potential, of the powder in the cement paste. Here a decrease from +3 mV to -40 mV could be measured. A strong value for the zeta potential leads to a higher repulsion of similarly charged particles and therefore prevents powder agglomeration and clogging on the nozzle during injection. These two modifications (bimodal particles size distribution and phytic acid) lead to a significant increase in the paste injectability. The unmodified paste was injectable for 30 \% only, where all modified pastes were practically fully injectable ~90 \% (the residual paste remained in the nozzle, while the syringe plunger already reached the end of the syringe). A very similar observation could be made for the β-TCP system. This system was modified with phytic acid. The zeta potential was decreased even stronger from -10 ± 1.5 mV to -71.5 ± 12 mV. The adsorption of the phytate ions and subsequent formation of chelate complexes with the newly dissolved Ca2+ ions also showed a retarding effect in the cements setting reaction. Where the unmodified cement was not measurable in the rheometer, as the reaction was faster than the measurement setup (~1.5 min), the modified cements showed a transition through the gel point between 3-6 min. This means the pastes stayed between 2 and 4 times longer viscous than without the modification. Like with the first cement system also here the effects of the phytate addition showed its beneficial influence in the injectability measurement. The unmodified cement was not injectable at all, due to the same issue already encountered at the rheology measurements, but all modified pastes were fully injectable for at least 5 min (lowest phytate concentration) and at least 10 min (all other concentrations) after the mixing of powder and liquid. The main goal of the last modification with sodium pyrophosphate was to create a paste that was stable in aqueous environment without setting until the activation takes place, but it should still show good injectability as this was the desired way of application after activation. Like before also the zeta potential changed after the addition of pyrophosphate. It could be lowered from -22 ± 2mV down to -61 to -68 ± 4mV (depending on the pyrophosphate concentration). The pastes were stored in airtight containers at room temperature and checked for their phase composition over 14 days. The unmodified paste showed a beginning phase conversion to hydroxyapatite between 7 and 14 days. All other pastes were still stable and unreacted. The pastes were activated with a high concentrated (30 wt\%) sodium orthophosphate solution. After the activation the pastes were checked for their injectability and showed an increase from -57 ± 11\% for the unmodified paste to -89 ± 3\% (practically fully injectable as described earlier) for the best modified paste (PP005). It can be concluded that the goal of enabling full injection of conventional calcium phosphate bone cement systems was reached. Additional work produced a storage stable paste that still ensures full injectability. Subsequent work already used the storable paste and modified it with hyaluronic acid to create an ink for 3D extrusion printing. The first two cement systems have also already been investigated in cell culture for their influence on osteoblasts and osteoclasts. The next steps would have to go more into the direction of translation. Figuring out what properties still need to be checked and where the modification needs adjustment to enable a clinical use of the presented systems.}, subject = {Calciumphosphat}, language = {en} } @article{OuhaddiCharbonnierPorgeetal.2023, author = {Ouhaddi, Yassine and Charbonnier, Baptiste and Porge, Juliette and Zhang, Yu-Ling and Garcia, Isadora and Gbureck, Uwe and Grover, Liam and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Development of neovasculature in axially vascularized calcium phosphate cement scaffolds}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304026}, year = {2023}, abstract = {Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.}, language = {en} } @article{RennerOttoKuebleretal.2023, author = {Renner, Tobias and Otto, Paul and K{\"u}bler, Alexander C. and H{\"o}lscher-Doht, Stefanie and Gbureck, Uwe}, title = {Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides}, series = {Journal of Materials Science: Materials in Medicine}, volume = {34}, journal = {Journal of Materials Science: Materials in Medicine}, doi = {10.1007/s10856-023-06714-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357342}, year = {2023}, abstract = {Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6-7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. Future efforts on bone adhesives made from phosphoserine and Mg2+ appear to be very worthwhile.}, language = {en} } @article{ElgheznawyOefteringEnglertetal.2023, author = {Elgheznawy, Amro and {\"O}ftering, Patricia and Englert, Maximilian and Mott, Kristina and Kaiser, Friederike and Kusch, Charly and Gbureck, Uwe and B{\"o}sl, Michael R. and Schulze, Harald and Nieswandt, Bernhard and V{\"o}gtle, Timo and Hermanns, Heike M.}, title = {Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1197894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320154}, year = {2023}, abstract = {Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.}, language = {en} } @article{EwaldFuchsBoegeleinetal.2023, author = {Ewald, Andrea and Fuchs, Andreas and Boegelein, Lasse and Grunz, Jan-Peter and Kneist, Karl and Gbureck, Uwe and Hoelscher-Doht, Stefanie}, title = {Degradation and bone-contact biocompatibility of two drillable magnesium phosphate bone cements in an in vivo rabbit bone defect model}, series = {Materials}, volume = {16}, journal = {Materials}, number = {13}, issn = {1996-1944}, doi = {10.3390/ma16134650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362824}, year = {2023}, abstract = {The use of bone-cement-enforced osteosynthesis is a growing topic in trauma surgery. In this context, drillability is a desirable feature for cements that can improve fracture stability, which most of the available cement systems lack. Therefore, in this study, we evaluated a resorbable and drillable magnesium-phosphate (MgP)-based cement paste considering degradation behavior and biocompatibility in vivo. Two different magnesium-phosphate-based cement (MPC) pastes with different amounts of phytic acid (IP 6) as setting retarder (MPC 22.5 and MPC 25) were implanted in an orthotopic defect model of the lateral femoral condyle of New Zealand white rabbits for 6 weeks. After explantation, their resorption behavior and material characteristics were evaluated by means of X-ray diffraction (XRD), porosimetry measurement, histological staining, peripheral quantitative computed tomography (pQCT), cone-beam computed tomography (CBCT) and biomechanical load-to-failure tests. Both cement pastes displayed comparable results in mechanical strength and resorption kinetics. Bone-contact biocompatibility was excellent without any signs of inflammation. Initial resorption and bone remodeling could be observed. MPC pastes with IP 6 as setting retardant have the potential to be a valuable alternative in distinct fracture patterns. Drillability, promising resorption potential and high mechanical strength confirm their suitability for use in clinical routine.}, language = {en} } @phdthesis{Ryma2022, author = {Ryma, Matthias}, title = {Exploiting the Thermoresponsive Properties of Poly(2-oxazoline)s for Biofabrication}, doi = {10.25972/OPUS-24746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this thesis, non-modified POx, namely PnPrOx and PcycloPrOx, with an LCST in the physiological range between 20 and 37°C have been utilized as materials for three different biofabrication approaches. Their thermoresponsive behavior and processability were exploited to establish an easy-to-apply coating for cell sheet engineering, a novel method to create biomimetic scaffolds based on aligned fibrils via Melt Electrowriting (MEW) and the application of melt electrowritten sacrificial scaffolds for microchannel creation for hydrogels. Chapter 3 describes the establishment of a thermoresponsive coating for tissue culture plates. Here, PnPrOx was simply dissolved in water and dried in well plates and petri dishes in an oven. PnPrOx adsorbed to the surface, and the addition of warm media generated a cell culture compatible coating. It was shown that different cell types were able to attach and proliferate. After confluency, temperature reduction led to the detachment of cell sheets. Compared to standard procedures for surface coating, the thermoresponsive polymer is not bound covalently to the surface and therefore does not require specialized equipment and chemical knowledge. However, it should be noted that the detachment of the cell layer requires the dissolution of the PnPrOx-coating, leading to possible polymer contamination. Although it is only a small amount of polymer dissolved in the media, the detached cell sheets need to be washed by media exchange for further processing if required. ...}, subject = {Thermoresponsive Polymere}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Horder, Hannes and Stahlhut, Philipp and Groll, J{\"u}rgen and Blunk, Torsten and Teßmar, J{\"o}rg}, title = {Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {2}, doi = {10.1002/mabi.202100331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257556}, pages = {2100331}, year = {2022}, abstract = {3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell-hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual-stage crosslinking approach based on thiolated hyaluronic acid (HA-SH), which not only provides stand-alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA-SH with different molecular weights is synthesized and crosslinked with acrylated (PEG-diacryl) and allylated (PEG-diallyl) polyethylene glycol in a two-step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV-mediated thiol-ene reaction to stabilize the printed bioink for long-term cell culture. Bioinks with high molecular weight HA-SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long-term cultured constructs. The dual-stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.}, language = {en} } @phdthesis{Meininger2022, author = {Meininger, Markus}, title = {Calcium hydroxide as antibacterial implant coating}, doi = {10.25972/OPUS-26112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261122}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In modern medicine hip and knee joint replacement are common surgical procedures. However, about 11 \% of hip implants and about 7 \% of knee implants need re-operations. The comparison of implant registers revealed two major indications for re-operations: aseptic loosening and implant infections, that both severely impact the patients' health and are an economic burden for the health care system. To address these problems, a calcium hydroxide coating on titanium was investigated in this thesis. Calcium hydroxide is a well-known antibacterial agent and used with success in dentistry. The coatings were applied with electrochemically assisted deposition, a versatile tool that combines easiness of process with the ability to coat complex geometries homogeneously. The pH-gradient during coating was investigated and showed the surface confinement of the coating process. Surface pre-treatment altered the surface morphology and chemistry of the titanium substrates and was shown to affect the morphology of the calcium hydroxide coatings. The influence of the coating parameters stirring speed and current pulsing were examined in various configurations and combinations and could also affect the surface morphology. A change in surface morphology results in a changed adhesion and behavior of cells and bacteria. Thus, the parameters surface pre-treatment, stirring speed and current pulsing presented a toolset for tailoring cellular response and antibacterial properties. Microbiological tests with S. aureus and S. epidermidis were performed to test the time-dependent antibacterial activity of the calcium hydroxide coatings. A reduction of both strains could be achieved for 13 h, which makes calcium hydroxide a promising antibacterial coating. To give insight into biofilm growth, a protocol for biofilm staining was investigated on titanium disks with S. aureus and S. epidermidis. Biofilm growth could be detected after 5 days of bacterial incubation, which was much earlier than the 3 weeks that are currently assumed in medical treatment. Thus, it should be considered to treat infections as if a biofilm were present from day 5 on. The ephemeral antibacterial properties of calcium hydroxide were further enhanced and prolonged with the addition of silver and copper ions. Both ionic modifications significantly enhanced the bactericidal potential. The copper modification showed higher antibacterial effects than the silver modification and had a higher cytocompatibility which was comparable to the pure calcium hydroxide coating. Thus, copper ions are an auspicious option to enhance the antibacterial properties. Calcium hydroxide coatings presented in this thesis have promising antibacterial properties and can easily be applied to complex geometries, thus they are a step in fighting aseptic loosening and implant infections.}, subject = {Calciumhydroxid}, language = {en} } @phdthesis{Shan2022, author = {Shan, Junwen}, title = {Tailoring Hyaluronic Acid and Gelatin for Bioprinting}, doi = {10.25972/OPUS-29825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the field of biofabrication, biopolymer-based hydrogels are often used as bulk materials with defined structures or as bioinks. Despite their excellent biocompatibility, biopolymers need chemical modification to fulfill mechanical stability. In this thesis, the primary alcohol of hyaluronic acid was oxidized using TEMPO/TCC oxidation to generate aldehyde groups without ring-opening mechanism of glycol cleavage using sodium periodate. For crosslinking reaction of the aldehyde groups, adipic acid dihydrazide was used as bivalent crosslinker for Schiff Base chemistry. This hydrogel system with fast and reversible crosslinking mechanism was used successfully as bulk hydrogel for chondrogenic differentiation with human mesenchymal stem cells (hMSC). Gelatin was modified with pentenoic acid for crosslinking reaction via light controllable thiol-ene reaction, using thiolated 4-arm sPEG as multivalent crosslinker. Due to preservation of the thermo responsive property of gelatin by avoiding chain degradation during modification reaction, this gelatin-based hydrogel system was successfully processed via 3D printing with low polymer concentration. Good cell viability was achieved using hMSC in various concentrations after 3D bioprinting and chondrogenic differentiation showed promising results.}, subject = {Hydrogel}, language = {en} } @article{JanzenBakirciFaberetal.2022, author = {Janzen, Dieter and Bakirci, Ezgi and Faber, Jessica and Andrade Mier, Mateo and Hauptstein, Julia and Pal, Arindam and Forster, Leonard and Hazur, Jonas and Boccaccini, Aldo R. and Detsch, Rainer and Teßmar, J{\"o}rg and Budday, Silvia and Blunk, Torsten and Dalton, Paul D. and Villmann, Carmen}, title = {Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation}, series = {Advanced Healthcare Materials}, volume = {11}, journal = {Advanced Healthcare Materials}, number = {21}, doi = {10.1002/adhm.202201826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318682}, year = {2022}, abstract = {3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.}, language = {en} } @phdthesis{Smolan2022, author = {Smolan, Willi}, title = {Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation}, doi = {10.25972/OPUS-27873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 \%, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N'-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 \% were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 \% due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 \% conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 \%. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 \%) and negatively charged functionalities via phosphonamide moieties (100 \%) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests.}, subject = {Wasserl{\"o}sliche Polymere}, language = {en} } @article{HauptsteinForsterNadernezhadetal.2022, author = {Hauptstein, Julia and Forster, Leonard and Nadernezhad, Ali and Groll, J{\"u}rgen and Teßmar, J{\"o}rg and Blunk, Torsten}, title = {Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284239}, year = {2022}, abstract = {In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.}, language = {en} } @phdthesis{Seifert2022, author = {Seifert, Annika Kristina}, title = {Unidirectional freezing of soft and hard matter for biomedical applications}, doi = {10.25972/OPUS-27728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A multitude of human tissues, such as bones, tendons, or muscles, are characterized by a hierarchical and highly ordered structure. In many cases, the loss of these tissues requires reconstruction using biocompatible replacement materials. In the field of bone replacement, the pore structure of the material has a crucial influence. Anisotropic porosity would have the advantage of facilitating the ingrowth of cells and newly formed blood vessels as well as the transport of nutrients. In this thesis, scaffolds with a highly ordered and anisotropic pore structure were fabricated using unidirectional freezing. Systematic investigations were carried out on biopolymer solutions (alginate and chitosan) to gain a deeper understanding of the freeze-structuring process. The knowledge gained was then applied to the development of anisotropically structured bone substitute materials. Here, the previously existing material platform for anisotropically structured calcium phosphates was extended to low-temperature phases such as calcium deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. After the implantation of a biomaterial, the inevitably triggered initial immune response plays a key role in the success of a graft, with immune cells such as neutrophils or macrophages being of particular importance. In this thesis, the influence of anisotropically structured alpha-TCP and CDHA scaffolds as well as their unstructured references on human monocytes/macrophages was investigated. Macrophages produced extracellular traps (ETs) due to mineral nanoparticles formed by the binding of phosphate and calcium ions to human platelet lysate. In particular, incubation of alpha-TCP samples in lysate containing cell culture medium resulted in pronounced particle formation and enhanced release of ETs.}, subject = {Freezing}, language = {en} } @article{PienBartolf–KoppParmentieretal.2022, author = {Pien, Nele and Bartolf-Kopp, Michael and Parmentier, Laurens and Delaey, Jasper and de Vos, Lobke and Mantovani, Diego and van Vlierberghe, Sandra and Dubruel, Peter and Jungst, Tomasz}, title = {Melt Electrowriting of a Photo-Crosslinkable Poly(ε-caprolactone)-Based Material into Tubular Constructs with Predefined Architecture and Tunable Mechanical Properties}, series = {Macromolecular Materials and Engineering}, volume = {307}, journal = {Macromolecular Materials and Engineering}, number = {7}, issn = {1438-7492}, doi = {10.1002/mame.202200097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318524}, year = {2022}, abstract = {Melt electrowriting (MEW) is an additive manufacturing process that produces highly defined constructs with elements in the micrometer range. A specific configuration of MEW enables printing tubular constructs to create small-diameter tubular structures. The small pool of processable materials poses a bottleneck for wider application in biomedicine. To alleviate this obstacle, an acrylate-endcapped urethane-based polymer (AUP), using a poly(ε-caprolactone) (PCL) (molar mass: 20 000 g mol\(^{-1}\)) (AUP PCL20k) as backbone material, is synthesized and utilized for MEW. Spectroscopic analysis confirms the successful modification of the PCL backbone with photo-crosslinkable acrylate endgroups. Printing experiments of AUP PCL20k reveal limited printability but the photo-crosslinking ability is preserved post-printing. To improve printability and to tune the mechanical properties of printed constructs, the AUP-material is blended with commercially available PCL (AUP PCL20k:PCL in ratios 80:20, 60:40, 50:50). Print fidelity improves for 60:40 and 50:50 blends. Blending enables modification of the constructs' mechanical properties to approximate the range of blood vessels for transplantation surgeries. The crosslinking-ability of the material allows pure AUP to be manipulated post-printing and illustrates significant differences in mechanical properties of 80:20 blends after crosslinking. An in vitro cell compatibility assay using human umbilical vein endothelial cells also demonstrates the material's non-cytotoxicity.}, language = {en} } @article{BrandForsterBoecketal.2022, author = {Brand, Jessica S. and Forster, Leonard and B{\"o}ck, Thomas and Stahlhut, Philipp and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Albrecht, Krystyna}, title = {Covalently Cross-Linked Pig Gastric Mucin Hydrogels Prepared by Radical-Based Chain-Growth and Thiol-ene Mechanisms}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {4}, doi = {10.1002/mabi.202100274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318453}, year = {2022}, abstract = {Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. Here, chain-growth and step-growth (thiol-ene) free-radical cross-linked hydrogels prepared from commercially available pig gastric mucin (PGM) are introduced and compared as cost-efficient and easily accessible alternative to the more broadly applied bovine submaxillary gland mucin. For this, PGM is functionalized with photoreactive acrylate groups or allyl ether moieties, respectively. Whereas homopolymerization of acrylate-functionalized polymers is performed, for thiol-ene cross-linking, the allyl-ether-functionalized PGM is cross-linked with thiol-functionalized hyaluronic acid. Morphology, mechanical properties, and cell compatibility of both kinds of PGM hydrogels are characterized and compared. Furthermore, the biocompatibility of these hydrogels can be evaluated in cell culture experiments.}, language = {en} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @article{KarakayaBiderFranketal.2022, author = {Karakaya, Emine and Bider, Faina and Frank, Andreas and Teßmar, J{\"o}rg and Sch{\"o}bel, Lisa and Forster, Leonard and Schr{\"u}fer, Stefan and Schmidt, Hans-Werner and Schubert, Dirk Wolfram and Blaeser, Andreas and Boccaccini, Aldo R. and Detsch, Rainer}, title = {Targeted printing of cells: evaluation of ADA-PEG bioinks for drop on demand approaches}, series = {Gels}, volume = {8}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels8040206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267317}, year = {2022}, abstract = {A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde—polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1-8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff's bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches.}, language = {en} } @article{KadeBakirciTandonetal.2022, author = {Kade, Juliane C. and Bakirci, Ezgi and Tandon, Biranche and Gorgol, Danila and Mrlik, Miroslav and Luxenhofer, Robert and Dalton, Paul D.}, title = {The Impact of Including Carbonyl Iron Particles on the Melt Electrowriting Process}, series = {Macromolecular Materials and Engineering}, volume = {307}, journal = {Macromolecular Materials and Engineering}, number = {12}, issn = {1438-7492}, doi = {10.1002/mame.202200478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318482}, year = {2022}, abstract = {Melt electrowriting, a high-resolution additive manufacturing technique, is used in this study to process a magnetic polymer-based blend for the first time. Carbonyl iron (CI) particles homogenously distribute into poly(vinylidene fluoride) (PVDF) melts to result in well-defined, highly porous structures or scaffolds comprised of fibers ranging from 30 to 50 µm in diameter. This study observes that CI particle incorporation is possible up to 30 wt\% without nozzle clogging, albeit that the highest concentration results in heterogeneous fiber morphologies. In contrast, the direct writing of homogeneous PVDF fibers with up to 15 wt\% CI is possible. The fibers can be readily displaced using magnets at concentrations of 1 wt\% and above. Combined with good viability of L929 CC1 cells using Live/Dead imaging on scaffolds for all CI concentrations indicates that these formulations have potential for the usage in stimuli-responsive applications such as 4D printing.}, language = {en} } @article{AnStrisselAlAbboodietal.2022, author = {An, Ran and Strissel, Pamela L. and Al-Abboodi, Majida and Robering, Jan W. and Supachai, Reakasame and Eckstein, Markus and Peddi, Ajay and Hauck, Theresa and B{\"a}uerle, Tobias and Boccaccini, Aldo R. and Youssef, Almoatazbellah and Sun, Jiaming and Strick, Reiner and Horch, Raymund E. and Boos, Anja M. and Kengelbach-Weigand, Annika}, title = {An innovative arteriovenous (AV) loop breast cancer model tailored for cancer research}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {7}, issn = {2306-5354}, doi = {10.3390/bioengineering9070280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278919}, year = {2022}, abstract = {Animal models are important tools to investigate the pathogenesis and develop treatment strategies for breast cancer in humans. In this study, we developed a new three-dimensional in vivo arteriovenous loop model of human breast cancer with the aid of biodegradable materials, including fibrin, alginate, and polycaprolactone. We examined the in vivo effects of various matrices on the growth of breast cancer cells by imaging and immunohistochemistry evaluation. Our findings clearly demonstrate that vascularized breast cancer microtissues could be engineered and recapitulate the in vivo situation and tumor-stromal interaction within an isolated environment in an in vivo organism. Alginate-fibrin hybrid matrices were considered as a highly powerful material for breast tumor engineering based on its stability and biocompatibility. We propose that the novel tumor model may not only serve as an invaluable platform for analyzing and understanding the molecular mechanisms and pattern of oncologic diseases, but also be tailored for individual therapy via transplantation of breast cancer patient-derived tumors.}, language = {en} } @article{BoehmTandonHrynevichetal.2022, author = {B{\"o}hm, Christoph and Tandon, Biranche and Hrynevich, Andrei and Teßmar, J{\"o}rg and Dalton, Paul D.}, title = {Processing of Poly(lactic-co-glycolic acid) Microfibers via Melt Electrowriting}, series = {Macromolecular Chemistry and Physics}, volume = {223}, journal = {Macromolecular Chemistry and Physics}, number = {5}, doi = {10.1002/macp.202100417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318444}, year = {2022}, abstract = {Polymers sensitive to thermal degradation include poly(lactic-co-glycolic acid) (PLGA), which is not yet processed via melt electrowriting (MEW). After an initial period of instability where mean fiber diameters increase from 20.56 to 27.37 µm in 3.5 h, processing stabilizes through to 24 h. The jet speed, determined using critical translation speed measurements, also reduces slightly in this 3.5 h period from 500 to 433 mm min\(^{-1}\) but generally remains constant. Acetyl triethyl citrate (ATEC) as an additive decreases the glass transition temperature of PLGA from 49 to 4 °C, and the printed ATEC/PLGA fibers exhibits elastomeric behavior upon handling. Fiber bundles tested in cyclic mechanical testing display increased elasticity with increasing ATEC concentration. The processing temperature of PLGA also reduces from 165 to 143 °C with increase in ATEC concentration. This initial window of unstable direct writing seen with neat PLGA can also be impacted through the addition of 10-wt\% ATEC, producing fiber diameters of 14.13 ± 1.69 µm for the first 3.5 h of heating. The investigation shows that the initial changes to the PLGA direct-writing outcomes seen in the first 3.5 h are temporary and that longer times result in a more stable MEW process.}, language = {en} } @article{HaagSonnleitnerLangetal.2022, author = {Haag, Hannah and Sonnleitner, David and Lang, Gregor and Dalton, Paul D.}, title = {Melt electrowriting to produce microfiber fragments}, series = {Polymers for Advanced Technologies}, volume = {33}, journal = {Polymers for Advanced Technologies}, number = {6}, issn = {1042-7147}, doi = {10.1002/pat.5641}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318465}, pages = {1989 -- 1992}, year = {2022}, language = {en} } @article{RymaGencNadernezhadetal.2022, author = {Ryma, Matthias and Gen{\c{c}}, Hatice and Nadernezhad, Ali and Paulus, Ilona and Schneidereit, Dominik and Friedrich, Oliver and Andelovic, Kristina and Lyer, Stefan and Alexiou, Christoph and Cicha, Iwona and Groll, J{\"u}rgen}, title = {A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {28}, doi = {10.1002/adma.202200653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318532}, year = {2022}, abstract = {A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.}, language = {en} } @article{WeiglBlumSanchoetal.2022, author = {Weigl, Franziska and Blum, Carina and Sancho, Ana and Groll, J{\"u}rgen}, title = {Correlative Analysis of Intra- Versus Extracellular Cell Detachment Events via the Alignment of Optical Imaging and Detachment Force Quantification}, series = {Advanced Materials Technologies}, volume = {7}, journal = {Advanced Materials Technologies}, number = {11}, issn = {2365-709X}, doi = {10.1002/admt.202200195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318544}, year = {2022}, abstract = {In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer.}, language = {en} } @article{BoehmStahlhutWeichholdetal.2022, author = {B{\"o}hm, Christoph and Stahlhut, Philipp and Weichhold, Jan and Hrynevich, Andrei and Teßmar, J{\"o}rg and Dalton, Paul D.}, title = {The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting}, series = {Small}, volume = {18}, journal = {Small}, number = {3}, doi = {10.1002/smll.202104193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257741}, year = {2022}, abstract = {Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(ε-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10\% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 µm over the entire 25-d period.}, language = {en} } @phdthesis{Blum2021, author = {Blum, Carina}, title = {A first step to an integral biointerface design for the early phase of regeneration}, doi = {10.25972/OPUS-21211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212117}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The implantation of any foreign material into the body automatically starts an immune reaction that serves as the first, mandatory step to regenerate tissue. The course of this initial immune reaction decides on the fate of the implant: either the biomaterial will be integrated into the host tissue to subsequently fulfill its intended function (e.g., tissue regeneration), or it will be repelled by fibrous encapsulation that determines the implant failure. Especially neutrophils and macrophages play major roles during this inflammatory response and hence mainly decide on the biomaterial's fate. For clinically relevant tissue engineering approaches, biomaterials may be designed in shape and morphology as well as in their surface functionality to improve the healing outcome, but also to trigger stem cell responses during the subsequent tissue regeneration phase. The main focus of this thesis was to unravel the influence of scaffold characteristics, including scaffold morphology and surface functionality, on primary human innate immune cells (neutrophils and macrophages) and human mesenchymal stromal cells (hMSCs) to assess their in vitro immune response and tissue regeneration capacity, respectively. The fiber-based constructs were produced either via melt electrowriting (MEW), when the precise control over scaffold morphology was required, or via solution electrospinning (ES), when the scaffold design could be neglected. All the fiber-based scaffolds used throughout this thesis were composed of the polymer poly(ε caprolactone) (PCL). A novel strategy to model and alleviate the first direct cell contact of the immune system with a peptide-bioactived fibrous material was presented in chapter 3 by treating the material with human neutrophil elastase (HNE) to imitate the neutrophil attack. The main focus of this study was put on the effect of HNE towards an RGDS-based peptide that was immobilized on the surface of a fibrous material to improve subsequent L929 cell adhesion. The elastase efficiently degraded the peptide-functionality, as evidenced by a decreased L929 cell adhesion, since the peptide integrated a specific HNE-cleavage site (AAPV-motif). A sacrificial hydrogel coating based on primary oxidized hyaluronic acid (proxHA), which dissolved within a few days after the neutrophil attack, provided an optimal protection of the peptide-bioactivated fibrous mesh, i.e, the hydrogel alleviated the neutrophil attack and largely ensured the biomaterial's integrity. Thus, according to these results, a means to protect the biomaterial is required to overcome the neutrophil attack. Chapter 4 was based on the advancement of melt electrowriting (MEW) to improve the printing resolution of MEW scaffolds in terms of minimal inter-fiber distances and a concomitant high stacking precision. Initially, to gain a better MEW understanding, the influence of several parameters, including spinneret diameter, applied pressure, and collector velocity on mechanical properties, crystallinity, fiber diameter and fiber surface morphology was analyzed. Afterward, innovative MEW designs (e.g., box-, triangle-, round , and wall-shaped scaffolds) have been established by pushing the printing parameters to their physical limits. Further, the inter-fiber distance within a standardized box-structured scaffold was successfully reduced to 40 µm, while simultaneously a high stacking precision was maintained. In collaboration with a co-worker of my department (Tina Tylek, who performed all cell-based experiments in this study), these novel MEW scaffolds have been proven to facilitate human monocyte-derived macrophage polarization towards the regenerative M2 type in an elongation-driven manner with a more pronounced effect with decreasing pore sizes. Finally, a pro-adipogenic platform for hMSCs was developed in chapter 5 using MEW scaffolds with immobilized, complex ECM proteins (e.g., human decellularized adipose tissue (DAT), laminin (LN), and fibronectin (FN)) to test for the adipogenic differentiation potential in vitro. Within this thesis, a special short-term adipogenic induction regime enabled to more thoroughly assess the intrinsic pro-adipogenic capacity of the composite biomaterials and prevented any possible masking by the commonly used long-term application of adipogenic differentiation reagents. The scaffolds with incorporated DAT consistently showed the highest adipogenic outcome and hence provided an adipo-inductive microenvironment for hMSCs, which holds great promise for applications in soft tissue regeneration. Future studies should combine all three addressed projects in a more in vivo-related manner, comprising a co-cultivation setup of neutrophils, macrophages, and MSCs. The MEW-scaffold, particularly due to its ability to combine surface functionality and adjustable morphology, has been proven to be a successful approach for wound healing and paves the way for subsequent tissue regeneration.}, subject = {Scaffold }, language = {en} } @article{ShanBoeckKelleretal.2021, author = {Shan, Junwen and B{\"o}ck, Thomas and Keller, Thorsten and Forster, Leonard and Blunk, Torsten and Groll, J{\"u}rgen and Teßmar, J{\"o}rg}, title = {TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {19}, issn = {1420-3049}, doi = {10.3390/molecules26195963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248362}, year = {2021}, abstract = {Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer's backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker.}, language = {en} } @article{HorderGuazaLasherasGrummeletal.2021, author = {Horder, Hannes and Guaza Lasheras, Mar and Grummel, Nadine and Nadernezhad, Ali and Herbig, Johannes and Erg{\"u}n, S{\"u}leyman and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Fabry, Ben and Bauer-Kreisel, Petra and Blunk, Torsten}, title = {Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, doi = {10.3390/cells10040803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236496}, year = {2021}, abstract = {Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell-cell and cell-matrix interplay within the tumor-stroma microenvironment}, language = {en} } @article{WielandStrisselSchorleetal.2021, author = {Wieland, Annalena and Strissel, Pamela L. and Schorle, Hannah and Bakirci, Ezgi and Janzen, Dieter and Beckmann, Matthias W. and Eckstein, Markus and Dalton, Paul D. and Strick, Reiner}, title = {Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers13205144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248443}, year = {2021}, abstract = {Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.}, language = {en} } @article{HaiderAhmadYangetal.2021, author = {Haider, Malik Salman and Ahmad, Taufiq and Yang, Mengshi and Hu, Chen and Hahn, Lukas and Stahlhut, Philipp and Groll, J{\"u}rgen and Luxenhofer, Robert}, title = {Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting}, series = {Gels}, volume = {7}, journal = {Gels}, number = {3}, issn = {2310-2861}, doi = {10.3390/gels7030078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241781}, year = {2021}, abstract = {As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.\% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97\%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.}, language = {en} } @article{SeifertGruberGburecketal.2021, author = {Seifert, Annika and Gruber, Julia and Gbureck, Uwe and Groll, J{\"u}rgen}, title = {Morphological control of freeze-structured scaffolds by selective temperature and material control in the ice-templating process}, series = {Advanced Engineering Materials}, volume = {24}, journal = {Advanced Engineering Materials}, number = {3}, doi = {10.1002/adem.202100860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256330}, year = {2021}, abstract = {Herein, it is aimed to highlight the importance of the process parameter choice during directional solidification of polymer solutions, as they have a significant influence on the pore structure and orientation. Biopolymer solutions (alginate and chitosan) are directionally frozen, while systematically varying parameters such as the external temperature gradient, the temperature of the overall system, and the temperatures of the cooling surfaces. In addition, the effect of material properties such as molecular weight, solution concentration, or viscosity on the sample morphology is investigated. By selecting appropriate temperature gradients and cooling surface temperatures, aligned pores ranging in size between (50 ± 22) μm and (144 ± 56) μm are observed in the alginate samples, whereas the pore orientation is influenced by altering the external temperature gradient. As this gradient increases, the pores are increasingly oriented perpendicular to the sample surface. This is also observed in the chitosan samples. However, if the overall system is too cold, that is, using temperatures of the lower cooling surface down to -60 °C combined with low temperatures of the upper cooling surface, control over pore orientation is lost. This is also found when viscosity of chitosan solutions is above ≈5 Pas near the freezing point.}, language = {en} } @phdthesis{Pinzner2021, author = {Pinzner, Florian}, title = {Vicinal and Double Chemoselective Biofunctionalization of Polyoxazolines}, doi = {10.25972/OPUS-22975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this work, a toolbox was provided to create three-component polymer conjugates with a defined architecture, designed to bear different biocomponents that can interact with larger biological systems in biomacromolecular recognition experiments. The target architecture is the attachment of two biomolecule 'arms' to the alpha telechelic end point of a polymer and fixating the conjugate to the gold surface of SAW and SPR sensor chips with the polymer's other omega chain end. This specific design of a conjugate will be implemented by using a strategy to yield novel double alpha as well as omega telechelic functionalized POx and the success of all cascade reaction steps leading to the final conjugation product will be proven through affinity measurements between covalently bound mannose and ConA. All reactions were performed on a low molecular model level first and then transferred to telechelic and also side chain functionalized polymer systems.}, subject = {Polyoxazoline}, language = {en} } @article{DoganScheuringWagneretal.2021, author = {Dogan, Leyla and Scheuring, Ruben and Wagner, Nicole and Ueda, Yuichiro and Schmidt, Sven and W{\"o}rsd{\"o}rfer, Philipp and Groll, J{\"u}rgen and Erg{\"u}n, S{\"u}leyman}, title = {Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels}, series = {Biofabrication}, volume = {13}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/ac26ac}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254046}, year = {2021}, abstract = {Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @phdthesis{HorvatCsotigebHorvat2021, author = {Horvat-Cs{\´o}ti [geb. Horvat], Sonja}, title = {Development of Nanocarriers for Treatment and Diagnostics of Aspergillosis}, doi = {10.25972/OPUS-23821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis aimed to evaluate the possibility to use nanoparticles as antifungal drug carriers as well as their potential application in screening and diagnostics of invasive aspergillosis. The interaction of nanogels, superparamagnetic iron oxide nanoparticles (SPIOs) and gold nanoparticles (GNP) with fungal-specific polysaccharides, cells and biofilms was investigated. Firstly, it was evaluated how the charge of nanogels influence their interaction with fungal cells. Linear poly(glycidol)s (pG) and poly(2-methyl-2-oxazoline) (pMOx) polymers were synthesized and further functionalized with thiol groups for preparation of redox responsive nanogels. Results showed that negatively charged nanogels were internalized by the fungi to a much greater extent than positively charged ones. Furthermore, it was investigated how amphiphilicity of polymers used for preparation of nanogels influences nanogel-fungi interaction. It was concluded that nanogels prepared from polymers with degree of functionalization of 10\% had the strongest interaction, regardless the length of the alkyl chain. Moreover, amphotericin B-loaded nanogels had a higher antifungal effect and lower toxicity towards mammalian cells than the free drug. In addition, inverse nanoprecipitation of thiol functionalized pGs was shown to be successful for preparation of nanogels with narrow size distribution. It was also demonstrated that crosslinking of the polymeric coating in hydrogel-like network with thiol functionalized pGs improved the SPIOs imaging performance. Finally, it was investigated whether GNPs could be used as model particles for the assessment of targeting to fungi. Fc dectin-1 was conjugated covalently to GNPs decorated with pGs, and binding affinity towards β-glucans was tested by surface plasmon resonance. In summary, this thesis demonstrated evidence for the potential of pG nanogels and pG coated nanoparticles for antifungal therapy and diagnostics of fungal infections caused by A. fumigatus.}, subject = {Therapeutisches System}, language = {en} } @article{HeiligSandnerJordanetal.2021, author = {Heilig, Philipp and Sandner, Phoebe and Jordan, Martin Cornelius and Jakubietz, Rafael Gregor and Meffert, Rainer Heribert and Gbureck, Uwe and Hoelscher-Doht, Stefanie}, title = {Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements}, series = {Materials}, volume = {14}, journal = {Materials}, number = {8}, issn = {1996-1944}, doi = {10.3390/ma14081925}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236633}, year = {2021}, abstract = {Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\)). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt\% and 25 wt\%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100\%. Compressive strength was shown to be ~12-13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability.}, language = {en} } @article{LuedemannJakuscheitEwaldetal.2021, author = {L{\"u}demann, Martin and Jakuscheit, Axel and Ewald, Andrea and Fr{\"u}hmann, Leena and H{\"o}lscher-Doht, Stefanie and Rudert, Maximilian and von Hertzberg-Boelch, Sebastian Philipp}, title = {Influence of Tranexamic Acid on Elution Characteristics and Compressive Strength of Antibiotic-Loaded PMMA-Bone Cement with Gentamicin}, series = {Materials}, volume = {14}, journal = {Materials}, number = {19}, issn = {1996-1944}, doi = {10.3390/ma14195639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246236}, year = {2021}, abstract = {Purpose: The topical application of tranexamic acid (TXA) into the joint space during total joint arthroplasty (TJA) with no increase of complications, has been widely reported. We investigated the influence of TXA on antibiotic release, activity of the released antibiotic against a clinical isolate of S. aureus, and compressive strength of a widely used commercially prepared gentamicin-loaded cement brand (PALACOS R + G). Method: 12 bone cement cylinders (diameter and height = 6 and 12 mm, respectively) were molded. After curing in air for at least 1 h, six of the cylinders were completely immersed in 5 mL of fetal calf serum (FCS) and the other six were completely immersed in a solution consisting of 4.9 mL of FCS and 0.1 mL (10 mg) of TXA. Gentamicin elution tests were performed over 7 d. Four hundred µL of the gentamicin eluate were taken every 24 h for the first 7 d without renewing the immersion fluid. The gentamicin concentration was determined in a clinical analyzer using a homogeny enzyme immuno-assay. The antimicrobial activity of the eluate, obtained after day 7, was tested. An agar diffusion test regime was used with Staphylococcus aureus. Bacteria were grown in a LB medium and plated on LB agar plates to get a bacterial lawn. Fifty µL of each eluate were pipetted on 12-mm diameter filter discs, which were placed in the middle of the agar gel. After 24 h of cultivation at 37 °C, the zone of inhibition (ZOI) for each specimen was measured. The compressive strength of the cements was determined per ISO 5833. Results: At each time point in the gentamicin release test, the difference in gentamicin concentration, obtained from specimens immersed in the FCS solution only and those immersed in the FCS + TXA solution was not significant (p = 0.055-0.522). The same trend was seen in each of the following parameters, after 7 d of immersion: (1) Cumulative gentamicin concentration (p < 0.297); (2) gentamicin activity against S. aureus (strongly visible); (3) ZOI size (mostly > 20 mm) (p = 0.631); and (4) compressive strength (p = 0.262). Conclusions: For the PALACOS R + G specimens, the addition of TXA to FCS does not produce significant decreases in gentamicin concentration, in the activity of the gentamicin eluate against a clinical isolate of S. aureus, the zone of inhibition of S. aureus, and in the compressive strength of the cement, after 7 d of immersion in the test solution.}, language = {en} } @article{NadernezhadRymaGencetal.2021, author = {Nadernezhad, Ali and Ryma, Matthias and Gen{\c{c}}, Hatice and Cicha, Iwona and J{\"u}ngst, Thomasz and Groll, J{\"u}rgen}, title = {Melt electrowriting of isomalt for high-resolution templating of embedded microchannels}, series = {Advanced Material Technologies}, volume = {6}, journal = {Advanced Material Technologies}, number = {8}, doi = {10.1002/admt.202100221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256401}, year = {2021}, abstract = {Fabrication of microchannels using 3D printing of sugars as fugitive material is explored in different fields, including microfluidics. However, establishing reproducible methods for the controlled production of sugar structures with sub-100 μm dimensions remains a challenge. This study pioneers the processing of sugars by melt electrowriting (MEW) enabling the fabrication of structures with so far unprecedented resolution from Isomalt. Based on a systematic variation of process parameters, fibers with diameters down to 20 μm can be fabricated. The flexibility in the adjustment of fiber diameter by on-demand alteration of MEW parameters enables generating constructs with perfusable channels within polydimethylsiloxane molds. These channels have a diameter that can be adjusted from 30 to 200 μm in a single design. Taken together, the experiments show that MEW strongly benefits from the thermal and physical stability of Isomalt, providing a robust platform for the fabrication of small-diameter embedded microchannel systems.}, language = {en} } @article{MechauFrankBakircietal.2021, author = {Mechau, Jannik and Frank, Andreas and Bakirci, Ezgi and Gumbel, Simon and Jungst, Tomasz and Giesa, Reiner and Groll, J{\"u}rgen and Dalton, Paul D. and Schmidt, Hans-Werner}, title = {Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion-Based Additive Manufacturing}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {1}, doi = {10.1002/macp.202000265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224513}, year = {2021}, abstract = {Several manufacturing technologies beneficially involve processing from the melt, including extrusion-based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt-processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)-based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt-processing techniques. Using extrusion-based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1-15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well-defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers.}, language = {en} } @article{MieszczanekRobinsonDaltonetal.2021, author = {Mieszczanek, Pawel and Robinson, Thomas M. and Dalton, Paul D. and Hutmacher, Dietmar W.}, title = {Convergence of Machine Vision and Melt Electrowriting}, series = {Advanced Materials}, volume = {33}, journal = {Advanced Materials}, number = {29}, doi = {10.1002/adma.202100519}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256365}, year = {2021}, abstract = {Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures—the jet angle and for the first time, the Taylor cone area—are monitored and analyzed with a machine vision system, while SEM imaging for diameter measurement correlates real-time information. This information, in turn, allows the detection and correction of fiber pulsing for accurate jet placement on the collector, and the in-process assessment of the fiber diameter. Improved process control is used to successfully fabricate collapsible MEW tubes; structures that require exceptional accuracy and printing stability. Using a precise winding angle of 60° and 300 layers, the resulting 12 mm-thick tubular structures have elastic snap-through instabilities associated with mechanical metamaterials. This study provides a detailed analysis of the fiber pulsing occurrence in MEW and highlights the importance of real-time monitoring of the Taylor cone volume to better understand, control, and predict printing instabilities.}, language = {en} } @article{PinznerKellerMutetal.2021, author = {Pinzner, Florian and Keller, Thorsten and Mut, J{\"u}rgen and Bechold, Julian and Seibel, J{\"u}rgen and Groll, J{\"u}rgen}, title = {Polyoxazolines with a vicinally double-bioactivated terminus for biomacromolecular affinity assessment}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s21093153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239530}, year = {2021}, abstract = {Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacing. Here, we develop a synthetic strategy, consisting of a cascade of a thioesterification, native chemical ligation (NCL) and thiol-ene reaction, in order to create three-component polymer conjugates with a defined double bioactivation at the chain end. The target architecture is the vicinal attachment of two biomolecule residues to the α telechelic end point of a polymer and a thioether group at the ω chain end for fixating the conjugate to a gold sensor chip surface. As proof-of-principle studies for affinity measurements, we demonstrate the interaction between covalently bound mannose and ConA in surface acoustic wave (SAW) and surface plasmon resonance (SPR) experiments.}, language = {en} } @article{DoryabTaskinStahlhutetal.2021, author = {Doryab, Ali and Taskin, Mehmet Berat and Stahlhut, Philipp and Schr{\"o}ppel, Andreas and Wagner, Darcy E. and Groll, J{\"u}rgen and Schmid, Otmar}, title = {A Biomimetic, Copolymeric Membrane for Cell-Stretch Experiments with Pulmonary Epithelial Cells at the Air-Liquid Interface}, series = {Advanced Functional Materials}, volume = {31}, journal = {Advanced Functional Materials}, number = {10}, doi = {10.1002/adfm.202004707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225645}, year = {2021}, abstract = {Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε-)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (≤5 μm) is stretchable (up to 25\% linear strain) with appropriate surface wettability and porosity for culturing lung epithelial cells under air-liquid interface conditions. The unique biphasic concept of this membrane provides optimum characteristics for initial cell growth (phase I) and then switch to biomimetic properties for cyclic cell-stretch experiments (phase II). It is showed that physiologic cyclic mechanical stretch improves formation of F-actin cytoskeleton filaments and tight junctions while non-physiologic over-stretch induces cell apoptosis, activates inflammatory response (IL-8), and impairs epithelial barrier integrity. It is also demonstrated that cyclic physiologic stretch can enhance the cellular uptake of nanoparticles. Since this membrane offers considerable advantages over currently used membranes, it may lead the way to more biomimetic in vitro models of the lung for translation of in vitro response studies into clinical outcome.}, language = {en} } @article{RymaTylekLiebscheretal.2021, author = {Ryma, Matthias and Tylek, Tina and Liebscher, Julia and Blum, Carina and Fernandez, Robin and B{\"o}hm, Christoph and Kastenm{\"u}ller, Wolfgang and Gasteiger, Georg and Groll, J{\"u}rgen}, title = {Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation}, series = {Advanced materials}, volume = {33}, journal = {Advanced materials}, number = {33}, doi = {10.1002/adma.202101228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256381}, year = {2021}, abstract = {Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of "melt electrofibrillation" is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment.}, language = {en} }