@phdthesis{Kopic2024, author = {Kopic, Eva}, title = {On the physiological role of post-translational regulation of the \(Arabidopsis\) guard cell outward rectifying potassium channel GORK}, doi = {10.25972/OPUS-34880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das streng regulierte Gleichgewicht zwischen CO2-Aufnahme und Transpiration ist f{\"u}r Pflanzen essentiell und h{\"a}ngt von kontrollierten Turgor{\"a}nderungen ab, die durch die Aktivit{\"a}t verschiedener Anionen- und Kationenkan{\"a}le verursacht werden. Diese Kan{\"a}le sind Teil von Signalkaskaden, die z. B. durch Phytohormone wie ABA (Abscisins{\"a}ure) und JA (Jasmonat) ausgel{\"o}st werden, die beide bei Trockenstress in den Schließzellen wirken. Dar{\"u}ber hinaus ist bekannt, dass JA an der Reaktion der Pflanze auf Pathogenbefall oder Verwundung beteiligt ist. GORK (guard cell outward rectifying K+ channel) ist der einzige bekannte, ausw{\"a}rts gleichrichtende K+-Kanal in Schließzellen und somit f{\"u}r den K+-Efflux beim Schließen der Stomata verantwortlich. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass GORK ein wesentlicher Bestandteil des JA-induzierten Stomatschlusses ist. Dies gilt f{\"u}r beide Ausl{\"o}ser, sowohl die Blattverwundung als auch die direkte Anwendung von JA. Patch-Clamp-Experimente an Protoplasten von Schließzellen untermauerten dieses Ergebnis, indem sie GORK-K+-Ausw{\"a}rtsstr{\"o}me als direktes Ziel von JA-Signalen entlarvten. Da bekannt ist, dass zytosolische Ca2+-Signale sowohl bei ABA- als auch bei JA-Signalen eine Rolle spielen, wurde die Interaktion von GORK mit Ca2+-abh{\"a}ngigen Kinasen untersucht. Eine antagonistische Regulation von GORK durch CIPK5-CBL1/9-Komplexe und ABI2 konnte durch DEVC (double electrode voltage clamp) sowie Protein-Protein-Interaktions-Experimente identifiziert und durch in-vitro Kinase-Assays untermauert werden. Patch-Clamp-Aufzeichnungen an Protoplasten von Schließzellen der cipk5-2 Funktions-Verlust-Mutante zeigten die Bedeutung von CIPK5 f{\"u}r den JA-induzierten Stomaschluss via Aktivierung von GORK. Die Interaktion verschiedener CDPKs (Ca2+-abh{\"a}ngige Proteinkinasen) mit GORK wurde ebenfalls untersucht. Neben der Ca2+-Signal{\"u}bertragung ist auch die Produktion von ROS (reaktive Sauerstoffspezies) f{\"u}r die ABA- und MeJA-Signal{\"u}bertragung von Bedeutung. In DEVC-Experimenten konnte ein reversibler Effekt von ROS auf die GORK-Kanalaktivit{\"a}t nachgewiesen werden, was ein Teil der Erkl{\"a}rung f{\"u}r diese ROS-Effekte bei ABA- und MeJA-Signalen sein k{\"o}nnte.}, subject = {Spalt{\"o}ffnung}, language = {en} } @phdthesis{Lu2024, author = {Lu, Jinping}, title = {The vacuolar TPC1 channel and its luminal calcium sensing site in the luminal pore entrance}, doi = {10.25972/OPUS-25135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251353}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The slowly activating vacuolar SV/TPC1 channel is ubiquitously expressed in plants and provides a large cation conductance in the vacuolar membrane. Thereby, monovalent (K+, Na+) and in principle also divalent cations, such as Ca2+, can pass through the channel. The SV/TPC1 channel is activated upon membrane depolarization and cytosolic Ca2+ but inhibited by luminal calcium. With respect to the latter, two luminal Ca2+ binding sites (site 1 Asp240/Asp454/Glu528, site 2 Glu239/Asp240/Glu457) were identified to coordinate luminal Ca2+. In this work, the characteristics of the SV/TPC1 channels in terms of regulation and function were further elucidated, focusing on the TPC1s of Arabidopsis thaliana and Vicia faba. For electrophysiological analysis of the role of distinct pore residues for channel gating and luminal Ca2+ sensing, TPC1 channel variants were generated by site-directed mutagenesis and transiently expressed as eGFP/eYFP-fusion constructs in Arabidopsis thaliana mesophyll protoplasts of the TPC1 loss-of-function mutant attpc1-2. 1. As visualized by confocal fluorescence laser-scanning microscopy, all AtTPC1 (WT, E605A/Q, D606N, D607N, E605A/D606N, E605Q/D606N/D607N, E457N/E605A/D606N) and VfTPC1 channel variants (WT, N458E/A607E/ N608D) were correctly targeted to the vacuole membrane. 2. Patch-clamp studies revealed that removal of one of the negative charges at position Glu605 or Asp606 was already sufficient to promote voltage-dependent channel activation with higher voltage sensitivity. The combined neutralization of these residues (E605A/D606N), however, was required to additionally reduce the luminal Ca2+ sensitivity of the AtTPC1 channel, leading to hyperactive AtTPC1 channels. Thus, the residues Glu605/Asp606 are functionally coupled with the voltage sensor of AtTPC1 channel, thereby modulating channel gating, and form a novel luminal Ca2+ sensing site 3 in AtTPC1 at the luminal entrance of the ion transport pathway. 3. Interestingly, this novel luminal Ca2+ sensing site 3 (Glu605/Asp606) and Glu457 from the luminal Ca2+ sensing site 2 of the luminal Ca2+-sensitive AtTPC1 channel were neutralized by either asparagine or alanine in the TPC1 channel from Vicia faba and many other Fabaceae. Moreover, the VfTPC1 was validated to be a hyperactive TPC1 channel with higher tolerance to luminal Ca2+ loads which was in contrast to the AtTPC1 channel features. As a result, VfTPC1 but not AtTPC1 conferred the hyperexcitability of vacuoles. When AtTPC1 was mutated for the three VfTPC1-homologous polymorphic site residues, the AtTPC1 triple mutant (E457N/E605A/D606N) gained VfTPC1-like characteristics. However, when VfTPC1 was mutated for the three AtTPC1-homologous polymorphic site residues, the VfTPC1 triple mutant (N458E/A607E/N608D) still sustained VfTPC1-WT-like features. These findings indicate that the hyperactivity of VfTPC1 is achieved in part by the loss of negatively charged amino acids at positions that - as part of the luminal Ca2+ sensing sites 2 and 3 - are homologous to AtTPC1-Glu457/Glu605/Asp606 and are likely stabilized by other unknown residues or domains. 4.The luminal polymorphic pore residues (Glu605/Asp606 in AtTPC1) apparently do not contribute to the unitary conductance of TPC1. Under symmetrical K+ conditions, a single channel conductance of about 80 pS was determined for AtTPC1 wild type and the AtTPC1 double mutant E605A/D606A. This is in line with the three-fold higher unitary conductance of VfTPC1 (232 pS), which harbors neutral luminal pore residues at the homologous sites to AtTPC1. In conclusion, by studying TPC1 channel from Arabidopsis thaliana and Vicia faba, the present thesis provides evidence that the natural TPC1 channel variants exhibit differences in voltage gating, luminal Ca2+ sensitivity and luminal Ca2+ binding sites.}, language = {en} } @phdthesis{Isasa2024, author = {Isasa, Emilie}, title = {Relationship between wood properties, drought-induced embolism and environmental preferences across temperate diffuse-porous broadleaved trees}, doi = {10.25972/OPUS-30356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In the scope of climate warming and the increase in frequency and intensity of severe heat waves in Central Europe, identification of temperate tree species that are suited to cope with these environmental changes is gaining increasing importance. A number of tree physiological characteristics are associated with drought-stress resistance and survival following severe heat, but recent studies have shown the importance of plant hydraulic and anatomical traits for predicting drought-induced tree mortality, such as vessel diameter, and their potential to predict species distribution in a changing climate. A compilation of large global datasets is required to determine traits related to drought-induced embolism and test whether embolism resistance can be determined solely by anatomical traits. However, most measurements of plant hydraulic traits are labour-intense and prone to measurement artefacts. A fast, accurate and widely applicable technique is necessary for estimating xylem embolism resistance (e.g., water potential at 50\% loss of conductivity, P50), in order to improve forecasts of future forest changes. These traits and their combination must have evolved following the selective pressure of the environmental conditions in which each species occurs. Describing these environmental-trait relationships can be useful to assess potential responses to environmental change and mitigation strategies for tree species, as future warmer temperatures may be compounded by drier conditions.}, subject = {Pflanzen{\"o}kologie}, language = {en} } @phdthesis{Iosip2024, author = {Iosip, Anda-Larisa}, title = {Molecular Mechanosensing Mechanisms of the Carnivorous Plant \(Dionaea\) \(muscipula\)}, doi = {10.25972/OPUS-28764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Plants are able to sense mechanical forces in order to defend themselves against predators, for instance by synthesizing repellent compounds. Very few plants evolved extremely sensitive tactile abilities that allow them to perceive, interpret and respond by rapid movement in the milliseconds range. One such rarity is the charismatic Venus flytrap (Dionaea muscipula) - a carnivorous plant which relies on its spectacular active trapping strategy to catch its prey. The snapping traps are equipped with touch-specialised trigger hairs, that upon bending elicit an action potential (AP). This electrical signal originates within the trigger hairs' mechanosensory cells and further propagates throughout the whole trap, alerting the plant of potential prey. Two APs triggered within thirty seconds will set off the trap and more than five APs will initiate the green stomach formation for prey decomposition and nutrient uptake. Neither the molecular components of the plant's AP nor the Venus flytrap's fast closure mechanism have been fully elucidated yet. Therefore, the general objective of this study is to expound on the molecular basis of touch perception: from AP initiation to trap closure and finally to stomach formation. The typical electrical signal in plants lasts for minutes and its shape is determined by the intensity of the mechanical force applied. In contrast, the Venus flytrap's one-second AP is of all-or-nothing type, similar in shape to the animal AP. In order to gain more insight into the molecular components that give rise to the Venus flytrap's emblematic AP, the transcriptomic landscape of its unique mechanotransducer - the trigger hair - was compared to the rest of the non-specialised tissues and organs. Additionally, the transcriptome of the electrically excitable fully-developed adult trap was compared to non-excitable juvenile traps that are unable to produce sharp APs. Together, the two strategies helped with the identification of electrogenic channels and pumps for each step of the AP as follows: (1) the most specific to the trigger hair was the mechanosensitive channel DmMSL10, making up the best candidate for the initial AP depolarization phase, (2) the K+ outward rectifier DmSKOR could be responsible for repolarisation, (3) further, the proton pump DmAHA4, might kick in during repolarisation and go on with hyperpolarisation and (4) the hyperpolarization- and acid-activated K+ inward rectifier KDM1 might contribute to the re-establishment of electrochemical gradient and the resting potential. Responsible for the AP-associated Ca2+ wave and electrical signal propagation, the glutamate-like receptor DmGLR3.6 was also enriched in the trigger hairs. Together, these findings suggest that the reuse of genes involved in electrical signalling in ordinary plants can give rise to the Venus flytrap's trademark AP. The Venus flytrap has been cultivated ever since its discovery, generating more than one hundred cultivars over the years. Among them, indistinguishable from a normal Venus flytrap at first sight, the 'ERROR' cultivar exhibits a peculiar behaviour: it is unable to snap its traps upon two APs. Nevertheless, it is still able to elicit normal APs. To get a better understanding of the key molecular mechanisms and pathways that are essential for a successful trap closure, the 'ERROR' mutant was compared to the functional wild type. Timelapse photography led to the observation that the 'ERROR' mutants were able to leisurely half close their traps when repeated mechanostimulation was applied (10 minutes after 20 APs, 0.03 Hz). As a result of touch or wounding in non-carnivorous plants, jasmonic acid (JA) is synthesized, alerting the plants of potential predators. Curiously, the JA levels were reduced upon mechanostimulation and completely impaired upon wounding in the 'ERROR' mutant. In search of genes accountable for the 'ERROR' mutant's defects, the transcriptomes of the two phenotypes were compared before and after mechanostimulation (1h after 10 APs, 0.01 Hz). The overall dampened response of the mutant compared to the wild type, was reflected at transcriptomic level as well. Only about 50\% of wild type's upregulated genes after touch stimulation were differentially expressed in 'ERROR' and they manifested only half of the wild type's expression amplitude. Among unresponsive functional categories of genes in 'ERROR' phenotype, there were: cell wall integrity surveilling system, auxin biosynthesis and stress-related transcription factors from the ethylene-responsive AP2/ERF and C2H2-ZF families. Deregulated Ca2+-decoding as well as redox-related elements together with JA-pathway components might also contribute to the malfunctioning of the 'ERROR' mutant. As the mutant does not undergo full stomach formation after mechanical treatment, these missing processes represent key milestones that might mediate growth-defence trade-offs under JA signalling. This confirms the idea that carnivory has evolved by recycling the already available molecular machineries of the ubiquitous plant immune system. To better understand the mutant's defect in the trap snapping mechanism, the ground states (unstimulated traps) of the two phenotypes were compared. In this case, many cell wall-related genes (e.g. expansins) were downregulated in the 'ERROR' mutant. For the first time, these data point to the importance of a special cell wall architecture of the trap, that might confer the mechanical properties needed for a functional buckling system - which amplifies the speed of the trap closure. This study provides candidate channels for each of the AP phases that give rise to and shape the sharp Venus flytrap-specific AP. It further underlines the possible contribution of the cell wall architecture to the metastable ready-to-snap configuration of the trap before stimulation - which might be crucial for the buckling-dependent snapping. And finally, it highlights molecular milestones linked to defence responses that ensure trap morphing into a green stomach after mechanostimulation. Altogether, these processes prove to be interdependent and essential for a successful carnivorous lifestyle.}, subject = {Venusfliegenfalle}, language = {en} } @phdthesis{Hettwer2024, author = {Hettwer, Anette}, title = {Entwicklung und Charakterisierung einer l{\"o}slichen und funktionalen BMP-2-Variante}, doi = {10.25972/OPUS-32680}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326800}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Bone Morphogenetic Proteins (BMPs) sind potente Differenzierungs- und Wachstumsfaktoren, die strukturell der Transforming Growth Factor-β (TGF-β) - Superfamilie zugeordnet werden. Sie spielen eine Schl{\"u}sselrolle in einer Vielzahl an zellul{\"a}ren Prozessen ab den fr{\"u}hen Stadien der Embryogenese. Dadurch sind BMPs nicht nur f{\"u}r die korrekte Festlegung der embryonalen K{\"o}rperachse verantwortlich, sondern regulieren als multifunktionale Mediatoren neben der Morphogenese auch Proliferation, Differenzierung und Apoptose unterschiedlicher Zelltypen. Bone Morphogenetic Proteins sind somit f{\"u}r die Aufrechthaltung der Hom{\"o}ostase im adulten K{\"o}rper mitverantwortlich. Ihre Funktionalit{\"a}t vermitteln die BMPs {\"u}ber eine Signalkaskade, indem sie als dimeres Protein spezifische transmembrane Serin/Threonin-Kinaserezeptoren von Typ I und Typ II in einem heteromeren Komplex assemblieren. Die intrazellul{\"a}re Signalweiterleitung verl{\"a}uft {\"u}ber verschiedene Signalkaskaden (Smad-Proteine oder MAPKs), wodurch final im Zellkern {\"A}nderungen auf der Ebene der Gentranskription ausgel{\"o}st werden. Laut der namensgebenden Eigenschaft fungieren einige Wachstumsfaktoren als aktive Induktoren der Knochenbiosynthese. Ihre Anwesenheit ist essentiell f{\"u}r die vielen zellul{\"a}ren Prozesse, die w{\"a}hrend einer Frakturheilung auftreten, wobei eine Knochenneubildung ebenso stark abh{\"a}ngig ist vom Zusammenspiel verschiedener Stimulatoren und Inhibitoren, die die BMPs in ihrer Aktivit{\"a}t regulieren. Bedingt durch ihr großes Potential fanden die erstmals durch Marshal Urist 1965 aus Knochenmaterial isolierten BMP-Proteine ihren Einsatz in der regenerativen Medizin. Kommerziell erh{\"a}ltlich und bereits seit vielen Jahren in der klinischen Anwendung befindet sich derzeit das rhBMP-2 und rhBMP-7. Diese beiden Wachstumsfaktoren werden u.a. verwendet, um die Heilungsprozesse von langwierigen Schienbeinfrakturen zu verbessern, aber auch bei degenerativen Wirbels{\"a}ulenerkrankungen und in der Kieferchirurgie. Jedoch f{\"u}hrt die schlechte L{\"o}slichkeit des BMPs aufgrund der ausgepr{\"a}gten Aggregationstendenz zu gravierenden Problemen, nicht nur w{\"a}hrend der biotechnologischen Herstellung, sondern auch bei der klinischen Anwendung. Der Schwerpunkt des Optimierungsbedarfs der BMP-2 Herstellung im Rahmen dieser Doktorarbeit lag daher auf der Etablierung eines prokaryotischen Expressionssystems f{\"u}r die l{\"o}sliche Produktion von BMP-2. Daf{\"u}r wurde zun{\"a}chst der Fokus auf die ung{\"u}nstigen L{\"o}slichkeitseigenschaften des Wachstumsfaktors gelegt. Um die hohe Aggregationsneigung des BMP-2 w{\"a}hrend der Produktion in Escherichia coli zu minimieren, wurden anhand einer Algorithmus-basierten Analyse BMP-2-Varianten entworfen, in denen Aminos{\"a}uren mit stark hydrophoben Eigenschaften gegen solche mit hydrophilem Charakter ausgetauscht wurden. Hierdurch konnten die zur Aggregation neigenden Bereiche des BMP-2 weitestgehend eliminiert werden. Es wurden f{\"u}r die bez{\"u}glich ihrer L{\"o}slichkeit optimierten Proteinvarianten unterschiedliche Expressionsstrategien etabliert, wodurch dimere BMP-2-Muteine in angepassten chromatographischen Profilen mit einem Aufreinigungsschritt und ohne jegliche Renaturierungsmaßnahmen gewonnen wurden. Allerdings verbleiben hierbei Restmengen an bakteriellen Kontaminationen, die vorwiegend aus endogenen ribosomalen E. coli-Proteinen stammen und nicht vollst{\"a}ndig entfernt werden konnten. W{\"a}hrend der umfassenden in vitro Charakterisierung der BMP-2-Varianten konnte durch massenspektroskopische Analysen die Gesamtmasse beider Zielproteine best{\"a}tigt werden, wobei sequenzspezifische Fragmente eine eindeutige Identifikation der eingebrachten Mutationen erm{\"o}glichten. CD-spektroskopische Analysen erweitert um Auswertealgorithmen konnten die wesentlichen Wt-BMP-2-typischen Sekund{\"a}rstrukturelemente identifizieren. Die neu generierten BMP-2-Varianten zeigen in der dynamischen Lichtstreuungsanalyse stark verminderte Aggregationstendenz im Vergleich zum Wildtyp-BMP-2. Dessen Aggregationsverhalten wurde durch die kombinierte Analytik seiner mikrofluidischen Diffusion und der dynamischen Lichtstreuung zum ersten Mal {\"u}ber den Konzentrationsbereich von 0.5 µM bis 100 mM genau charakterisiert. Erste zellbiologische Versuche verliefen ohne Erfolg, wodurch die biologische Aktivit{\"a}t der BMP-Varianten nicht abschließend gekl{\"a}rt werden konnte. Die simple Methode zur Expression und Aufreinigung der hydrophilisierte BMP-2-Muteine aus dieser Dissertation kann leicht in einen gr{\"o}ßeren Produktionsmaßstab {\"u}berf{\"u}hrt werden. BMP 2 kann dadurch schneller und kosteng{\"u}nstiger hergestellt werden. Final bleibt es jedoch erforderlich, die biologische Aktivit{\"a}t der neuen l{\"o}slichen BMP-2-Varianten vollst{\"a}ndig zu charakterisieren, um deren ganzes Funktionsspektrum zu entdecken. Der Fokus weiterer Forschung sollte zudem auf die verbleibende Oligomerisierungstendenz und die bestehende Kontamination mit Fremdproteinen gelegt werden, da diese beiden Faktoren letztendlich die Ausbeute an dimeren BMP-2 Varianten aus diesem System derzeit minimieren.}, subject = {Knochen-Morphogenese-Proteine}, language = {de} } @phdthesis{Kreisz2024, author = {Kreisz, Philipp}, title = {Group S1 bZIP transcription factors regulate sink tissue development by controlling carbon and nitrogen resource allocation in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321925}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The evolutionary success of higher plants is largely attributed to their tremendous developmental plasticity, which allows them to cope with adverse conditions. However, because these adaptations require investments of resources, they must be tightly regulated to avoid unfavourable trade-offs. Most of the resources required are macronutrients based on carbon and nitrogen. Limitations in the availability of these nutrients have major effects on gene expression, metabolism, and overall plant morphology. These changes are largely mediated by the highly conserved master kinase SNF1-RELATED PROTEIN KINASE1 (SnRK1), which represses growth and induces catabolic processes. Downstream of SnRK1, a hub of heterodimerising group C and S1 BASIC LEUCINE ZIPPER (bZIP) transcription factors has been identified. These bZIPs act as regulators of nutrient homeostasis and are highly expressed in strong sink tissues, such as flowers or the meristems that initiate lateral growth of both shoots and roots. However, their potential involvement in controlling developmental responses through their impact on resource allocation and usage has been largely neglected so far. Therefore, the objective of this work was to elucidate the impact of particularly S1 bZIPs on gene expression, metabolism, and plant development. Due to the high homology and suspected partial redundancy of S1 bZIPs, higher order loss-of-function mutants were generated using CRISPR-Cas9. The triple mutant bzip2/11/44 showed a variety of robust morphological changes but maintained an overall growth comparable to wildtype plants. In detail however, seedlings exhibited a strong reduction in primary root length. In addition, floral transition was delayed, and siliques and seeds were smaller, indicating a reduced supply of resources to the shoot and root apices. However, lateral root density and axillary shoot branching were increased, suggesting an increased ratio of lateral to apical growth in the mutant. The full group S1 knockout bzip1/2/11/44/53 showed similar phenotypes, albeit far more pronounced and accompanied by growth retardation. Metabolomic approaches revealed that these architectural changes were accompanied by reduced sugar levels in distal sink tissues such as flowers and roots. Sugar levels were also diminished in leaf apoplasts, indicating that long distance transport of sugars by apoplastic phloem loading was impaired in the mutants. In contrast, an increased sugar supply to the proximal axillary buds and elevated starch levels in the leaves were measured. In addition, free amino acid levels were increased in bzip2/11/44 and bzip1/2/11/44/53, especially for the important transport forms asparagine and glutamine. The increased C and N availability in the proximal tissues could be the cause of the increased axillary branching in the mutants. To identify bZIP target genes that might cause the observed shifts in metabolic status, RNAseq experiments were performed. Strikingly, clade III SUGARS WILL EVENTUALLY BE EXPORTED (SWEET) 8 genes were abundant among the differentially expressed genes. As SWEETs are crucial for sugar export to the apoplast and long-distance transport through the phloem, their reduced expression is likely to be the cause of the observed changes in sugar allocation. Similarly, the reduced expression of GLUTAMINE AMIDOTRANSFERASE 1_2.1 (GAT1_2.1), which exhibits glutaminase activity, could be an explanation for the abundance of glutamine in the mutants. Additional experiments (ATAC-seq, DAP� seq, PTA, q-RT-PCR) supported the direct induction of SWEETs and GAT1_2.1 by S1 bZIPs. To confirm the involvement of these target genes in the observed S1 bZIP mutant phenotypes, loss-of-function mutants were obtained, which showed moderately increased axillary branching. At the same time, the induced overexpression of bZIP11 in axillary meristems had the opposite effect. Collectively, a model is proposed for the function of S1 bZIPs in regulating sink tissue development. For efficient long-distance sugar transport, bZIPs may be required to induce the expression of clade III SWEETs. Thus, reduced SWEET expression in the S1 bZIP mutants would lead to a decrease in apoplastic sugar loading and a reduced supply to distal sinks such as shoot or root apices. The reduction in long� distance transport could lead to sugar accumulation in the leaves, which would then increasingly be transported via symplastic routes towards proximal sinks such as axillary branches and lateral roots or sequestered as starch. The reduced GAT1_2.1 levels lead to an abundance of glutamine, a major nitrogen transport form. The combined effect on C and N allocation results in increased nutrient availability in proximal tissues, promoting the formation of lateral plant organs. Alongside emerging evidence highlighting the power of bZIPs to steer nutrient allocation in other species, a novel but evolutionary conserved role for S1 bZIPs as regulators of developmental plasticity is proposed, while the generation of valuable data sets and novel genetic resources will help to gain a deeper understanding of the molecular mechanisms involved}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Kumar2024, author = {Kumar, Manish}, title = {Structural and compositional effects on tree-water relation}, doi = {10.25972/OPUS-32624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326245}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Forests are essential sources of tangible and intangible benefits, but global climate change associated with recurrent extreme drought episodes severely affects forest productivity due to extensive tree die-back. On that, it appeals to an urgency for large-scale reforestation efforts to mitigate the impact of climate change worldwide; however, there is a lack of understanding of drought-effect on sapling growth and survival mechanisms. It is also challenging to anticipate how long trees can survive and when they succumb to drought. Hence, to ensure success of reforestation programs and sustainable forest productivity, it is essential to identify drought-resistant saplings. For that, profound knowledge of hydraulic characteristics is needed. To achieve this, the study was split into two phases which seek to address (1) how the hydraulic and anatomical traits influence the sapling's growth rate under drought stress. (2) how plant water potential regulation and physiological traits are linked to species' water use strategies and their drought tolerance. The dissertation is assembled of two study campaigns carried out on saplings at the Chair of Botany II, University of W{\"u}rzburg, Germany. The first study involved three ecologically important temperate broadleaved tree species — saplings of 18-month (Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia) — grown from seeds in contrasting conditions (inside a greenhouse and outside), with the latter being subjected to severe natural heat waves. In the second study, two additional temperate species (Fagus sylvatica and Tilia cordata) were added. The drying-out event was conducted using a randomised blocked design by monitoring plant water status in a climate-controlled chamber and a greenhouse. In campaign I, I present the result based on analysed data of 82 plants of temperate deciduous species and address the juvenile growth rate trade-off with xylem safety-efficiency. Our results indicate biomass production varies considerably due to the contrasted growing environment. High hydraulic efficiency is necessary for increased biomass production, while safety-efficiency traits are decoupled and species-specific. Furthermore, productivity was linked considerably to xylem safety without revealing a well-defined pattern among species. Moreover, plasticity in traits differed between stressed and non-stressed plants. For example, safety-related characteristics were more static than efficiency-related traits, which had higher intra-specific variation. Moreover, we recorded anatomical and leaf traits adjustments in response to a stress condition, but consistency among species is lacking. In campaign II, I combined different ways to estimate the degree of isohydry based on water potential regulation and connected the iso-anisohydric spectrum (i.e., hydroscape area, HSA) to hydraulic traits to elucidate actual plant performance during drought. We analysed plant water potential regulation (Ψpd and Ψmd) and stomatal conductance of 28-29 month saplings of five species. I used a linear mixed modelling approach that allowed to control individual variations to describe the water potential regulation and tested different conceptual definitions of isohydricity. The combined methods allowed us to estimate species' relative degree of isohydry. Further, we examined the traits coordination, including hydraulic safety margin, HSM; embolism resistance, P88; turgor loss, Ψtlp; stomata closure, Ps90; capacitance, C; cuticular conductance, gmin, to determine time to hydraulic failure (Thf). Thf is the cumulative effect of time to stomata closure (Tsc) and time after stomatal closure to catastrophic hydraulic failure (Tcrit). Our results show the species' HSA matches their stomatal stringency, which confirms the relationship between stomatal response and leaf water potential decline. Species that close stomata at lower water potential notably had a larger HSA. Isohydric behaviour was mostly associated with leaf hydraulic traits and poorly to xylem safety traits. Species' degree of isohydry was also unrelated to the species' time to death during drying-out experiments. This supports the notion that isohydry behaviours are linked to water use rather than drought survival strategies. Further, consistent with our assumptions, more isohydric species had larger internal water storage and lost their leaf turgor at less negative water potentials. Counter to our expectations, neither embolism resistance nor the associated hydraulic safety margins were related to metrics of isohydry. Instead, our results indicate traits associated with plant drought response to cluster along two largely independent axes of variation (i.e., stomatal stringency and xylem safety). Furthermore, on the temporal progression of plant drought responses, stomatal closure is critical in coordinating various traits to determine species' hydraulic strategies. Desiccation avoidance strategy was linked to Tsc and coordinated traits response of Ps90, Ψtlp, and HSA, whereas desiccation tolerance was related to Tcrit and traits such as lower P88 value, high HSM, and lower gmin. Notably, the shoot capacitance (C) is crucial in Thf and exhibits dichotomous behaviour linked to both Tsc and Tcrit. In conclusion, knowledge of growth rate trade-offs with xylem safety-efficiency combined with traits linked to species' hydraulic strategies along the isohydry could substantially enhance our ability to identify drought-resistant saplings to ensure the success of reforestation programs and predicting sensitivity to drought for achieving sustainable forest ecosystems.}, subject = {Wachstumsrate}, language = {en} } @phdthesis{Huang2023, author = {Huang, Shouguang}, title = {Role of ABA-induced Ca\(^{2+}\) signals, and the Ca\(^{2+}\)-controlled protein kinase CIPK23, in regulation of stomatal movements}, doi = {10.25972/OPUS-20473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependent signaling branch is still debated, as the core ABA signaling pathway only possesses Ca2+-independent components. Therefore, the aim of this thesis was to address the role of the Ca2+-dependent branch in the ABA signaling pathway of guard cells. In the first part of the thesis, the relation between ABA-induced Ca2+ signals and stomatal closure was studied, with guard cells that express the genetically encoded Ca2+-indicator R-GECO1-mTurquoise. Ejection of ABA into the guard cell wall rapidly induced stomatal closure, however, only in ¾ of the guard cells ABA evoked a cytosolic Ca2+ signal. A small subset of stomata (¼ of the experiments) closed without Ca2+ signals, showing that the Ca2+ signals are not essential for ABA-induced stomatal closure. However, stomata in which ABA evoked Ca2+ signals closed faster as those in which no Ca2+ signals were detected. Apparently, ABA-induced Ca2+ signals enhance the velocity of stomatal closure. In addition to ABA, hyperpolarizing voltage pulses could also trigger Ca2+ signals in wild type guard cells, which in turn activated S-type anion channels. However, these voltage pulses failed to elicit S-type anion currents in the slac1/slah3 guard cells, suggesting that SLAC1 and SLAH3 contribute to Ca2+-activated conductance. Taken together, our data indicate that ABA-induced Ca2+ signals enhance the activity of S-type anion channels, which accelerates stomatal closure. The second part of the thesis deals with the signaling pathway downstream of the Ca2+ signals. Two types of Ca2+-dependent protein kinase modules (CPKs and CBL/CIPKs) have been implicated in guard cells. We focused on the protein kinase CIPK23 (CBL-Interacting Protein Kinase 23), which is activated by the Ca2+-dependent protein CBL1 or 9 (Calcineurin B-Like protein 1 or 9) via interacting with the NAF domain of CIPK23. The CBL1/9-CIPK23 complex has been shown to affect stomatal movements, but the underlying molecular mechanisms remain largely unknown. We addressed this topic by using an estrogen-induced expression system, which specifically enhances the expression of wild type CIPK23, a phosphomimic CIPK23T190D and a kinase dead CIPK23K60N in guard cells. Our data show that guard cells expressing CIPK23T190D promoted stomatal opening, while CIPK23K60N enhanced ABA-induced stomatal closure, suggesting that CIPK23 is a negative regulator of stomatal closure. Electrophysiological measurements revealed that the inward K+ channel currents were similar in guard cells that expressed CIPK23, CIPK23T190D or CIPK23K60N, indicating that CIPK23-mediated inward K+ channel AKT1 does not contribute to stomatal movements. Expression of CIPK23K60N, or loss of CIPK23 in guard cells enhanced S-type anion activity, while the active CIPK23T190D inhibited the activity of these anion channels. These results are in line with the detected changes in stomatal movements and thus indicate that CIPK23 regulates stomatal movements by inhibiting S-type anion channels. CIPK23 thus serves as a brake to control anion channel activity. Overall, our findings demonstrate that CIPK23-mediated stomatal movements do not depend on CIPK23-AKT1 module, instead, it is achieved by regulating S-type anion channels SLAC1 and SLAH3. In sum, the data presented in this thesis give new insights into the Ca2+-dependent branch of ABA signaling, which may help to put forward new strategies to breed plants with enhanced drought stress tolerance, and in turn boost agricultural productivity in the future.}, language = {en} } @phdthesis{Li2023, author = {Li, Kunkun}, title = {Dissecting the interconnection of Ca\(^{2+}\) and pH signaling in plants with a novel biosensor for dual imaging}, doi = {10.25972/OPUS-24973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Calcium ion (Ca2+) and protons (H+) are both regarded as second messengers, participating in plant growth and stress mechanisms. However, H+ signals in plant physiology are less well investigated compared to Ca2+ signals. If interconnections between these two second messengers exist remains to be uncovered because appropriate imaging tools to monitor Ca2+ and H+ simultaneously in the same cell as well as accurate bioinformatics analysis remain to be developed. To overcome this problem and unravel the role and possible interconnection of Ca2+ and H+ in plants, a new biosensor named CapHensor was developed and optimized to visualize intracellular Ca2+ and H+ changes simultaneously and ratiometrically in the same cell. The CapHensor consisted of an optimized green fluorescent pH sensor (PRpHluorin) and an established red fluorescent Ca2+ sensor (R-GECO1) that were combined in one construct via a P2A sequence. A P2A self-cleavage site between the two sensors allowed to express equal amounts but spatially separated sensors, which enabled artifact-free and ratiometric imaging of cellular Ca2+ and pH side-by-side. The function of the CapHensor was verified in pollen tubes, since they possess standing Ca2+ and pH gradients. We found better imaging quality and the signal-to-noise ratio to be enhanced in live-cell imaging when two R-GECO1 proteins were fused in tandem within the CapHensor construct. To guarantee exclusive subcellular localization and avoid mixed signals from different compartments, Nuclear Export Sequence (NES) and Nuclear Localization Sequence (NLS) were used to target PRpHluorin and R-GECO1 to distinct compartments. After optimization and verification its function, CapHensor was successfully expressed in different cell types to investigate the role of Ca2+ and H+ signals to control polar growth of pollen tube, stomatal movement or leaf defense signaling. Results obtained in the past indicated both Ca2+ gradients and pH gradients in pollen tubes play roles in polar growth. However, the role and temporal relationship between the growth process and changes in Ca2+ and pH have not been conclusively resolved. Using CapHensor, I found cytosolic acidification at the tip could promote and alkalization to suppress growth velocity in N. tabacum pollen tubes, indicating that cytosolic H+ concentrations ([H+]cyt) play an important role in regulation pollen tubes growth despite the accompanied changes in cytosolic Ca2+ concentrations ([Ca2+]cyt). Moreover, growth correlated much better with the tip [H+]cyt regime than with the course of the tip [Ca2+]cyt regime. However, surprisingly, tip-focused [Ca2+]cyt andII [H+]cyt oscillations both lagged behind growth oscillations approximately 33 s and 18 s, respectively, asking for a re-evaluation of the role that tip [Ca2+]cyt may play in pollen tube growth. Live-cell CapHensor imaging combined with electrophysiology uncovered that oscillatory membrane depolarization correlated better with tip [H+]cyt oscillations than with tip [Ca2+]cyt oscillations, indicative for a prominent role of [H+]cyt to also control electrogenic membrane transport. Using CapHensor, reading out cellular movement at the same time enabled to provide a precise temporal and spatial resolution of ion signaling events, pointing out a prominent role of [H+]cyt in pollen tube tip growth. For leaf cells, a special CapHensor construct design had to be developed, containing additional NES localization sequences to avoid overlapping of fluorescense signals from the nucleus and the cytosol. Once this was achieved, the role of Ca2+ and pH changes in guard cells, another typical single-cell system was investigated. Cytosolic pH changes have been described in stomatal movement, but the physiological role of pH and the interaction with changing Ca2+ signals were still unexplored. Combining CapHensor with the here developed technique to monitor stomatal movement in parallel, the role of Ca2+ and H+ in stomatal movement was studied in detail and novel aspects were identified. The phytohormone ABA and the bacterial elicitor flagellin (flg22) are typical abiotic and biotic stresses, respectively, to trigger stomatal closure. What kind of Ca2+ and H+ signals by ABA and flg22 are set-off in guard cells and what their temporal relationship and role for stomatal movement is were unknown. Similar [Ca2+]cyt increases were observed upon ABA and flg22 triggered stomatal closure, but [H+]cyt dynamics differed fundamentally. ABA triggered pronounced cytosolic alkalization preceded the [Ca2+]cyt responses significantly by 57 s while stomata started to close ca. 205 s after phytohormone application. With flg22, stomatal closure was accompanied only with a mild cytosolic alkalization but the [Ca2+]cyt response was much more pronounced compared to the ABA effects. Where the cytosolic alkalization originates from was unclear but the vacuole was speculated to contribute in the past. In this thesis, vacuolar pH changes were visualized by the dye BCECF over time, basically displaying exactly the opposite course of the concentration shift in the vacuole than observed in the cytosol. This is indicative for the vacuolar pH dynamics to be coupled strongly to the cytosolic pH changes. In stomatal closure signalling, reactive oxygen species (ROS) were proposed to play a major role, however, only very high concentration of H2O2 (> 200 µM), which resulted in the loss of membrane integrity, induced stomatal closure. Unexpectedly, physiological concentrations of ROS led to cytosolic acidificationIII which was associated with stomatal opening, but not stomatal closure. To study the role of [H+]cyt to steer stomatal movement in detail, extracellular and intracellular pH variations were evoked in N. tabacum guard cells and their behaviour was followed. The results demonstrated cytosolic acidification stimulated stomatal opening while cytosolic alkalization triggered stomatal closure accompanied by [Ca2+]cyt elevations. This demonstrated pH regulation to be an important aspect in stomatal movement and to feed-back on the Ca2+-dynamics. It was remarkable that cytosolic alkalization but not [Ca2+]cyt increase seemed to play a crucial role in stomatal closure, because more pronounced cytosolic alkalization, evoked stronger stomatal closure despite similar [Ca2+]cyt increases. Increases in [Ca2+]cyt, which are discussed as an early stomatal closure signal in the past, could not trigger stomatal closure alone in my experiments, even when extremely strong [Ca2+]cyt signals were triggered. Regarding the interaction between the two second messengers, [Ca2+]cyt and [H+]cyt were negatively correlated most of the times, which was different from pollen tubes showing positive correlation of [Ca2+]cyt and [H+]cyt regimes. [Ca2+]cyt elevations were always associated with a cytosolic alkalization and this relationship could be blocked by the presence of vanadate, a plasma membrane H+-pump blocker, indicating plasma membrane H+-ATPases to contribute to the negative correlation of [Ca2+]cyt and [H+]cyt. To compare with guard cells, cytosolic and nuclear versions of CapHensor were expressed in N. benthamiana mesophyll cells, a multicellular system I investigated. Mesophyll cell responses to the same stimuli as tested in guard cells demonstrated that ABA and H2O2 did not induce any [Ca2+]cyt and [H+]cyt changes while flg22 induced an increase in [Ca2+]cyt and [H+]cyt, which is different from the response in guard cells. I could thus unequivocally demonstrate that guard cells and mesophyll cells do respond differently with [Ca2+]cyt and [H+]cyt changes to the same stimuli, a concept that has been proposed before, but never demonstrated in such detail for plants. Spontaneous Ca2+ oscillations have been observed for a long time in guard cells, but the function or cause is still poorly understood. Two populations of oscillatory guard cells were identified according to their [Ca2+]cyt and [H+]cyt phase relationship in my study. In approximately half of the oscillatory cells, [H+]cyt oscillations preceded [Ca2+]cyt oscillations whereas [Ca2+]cyt was the leading signal in the other half of the guard cells population. Strikingly, natural [H+]cyt oscillations were dampened by ABA but not by flg22. This effect could be well explained by dampening of vacuolar H+ oscillations in the presence of ABA, but not through flg22. Vacuolar pH contributes to spontaneous [H+]cyt oscillations and ABA but not flg22 can block the interdependence of naturalIV [Ca2+]cyt and [H+]cyt signals. To study the role of [Ca2+]cyt oscillations in stomatal movement, solutions containing high and low KCl concentrations were applied aiming to trigger [Ca2+]cyt oscillations. The triggering of [Ca2+]cyt oscillations by this method was established two decades ago leading to the dogma that [Ca2+]cyt increases are the crucial signal for stomatal closure. However, I found stomatal movement by this method was mainly due to osmotic effects rather than [Ca2+]cyt increases. Fortunately, through this methodology, I found a strong correlation between cytosolic pH and the transport of potassium across the plasma membrane and vacuole existed. The plasma membrane H+-ATPases and H+-coupled K+ transporters were identified as the cause of [H+]cyt changes, both very important aspects in stomata physiology that were not visualized experimentally before. Na+ transport is also important for stomatal regulation and leaves generally since salt can be transported from the root to the shoot. Unlike well-described Ca2+- dependent mechanisms in roots, how leaves process salt stress is not at all understood. I applied salt on protoplasts from leaves, mesophyll cells and guard cells and combined live-cell imaging with Vm recordings to understand the transport and signaling for leaf cells to cope with salt stress. In both, mesophyll and guard cells, NaCl did not trigger Ca2+-signals as described for roots but rather triggered Ca2+ peaks when washing salt out. However, membrane depolarization and pronounced alkalinization were very reliably triggered by NaCl, which could presumably act as a signal for detoxification of high salt concentrations. In line with this, I found the vacuolar cation/H+ antiporter NHX1 to play a role in sodium transport, [H+]cyt homeostasis and the control of membrane potential. Overexpression of AtNHX1 enabled to diminish [H+]cyt changes and resulted in a smaller depolarization responses druing NaCl stress. My results thus demonstrated in contrast to roots, leaf cells do not use Ca2+-dependent signalling cascades to deal with salt stress. I could show Na+ and K+ induced [H+]cyt and Vm responses and Cl- transport to only have a minor impact. Summing all my results up briefly, I uncovered pH signals to play important roles to control pollen tube growth, stomatal movement and leaf detoxification upon salt. My results strongly suggested pH changes might be a more important signal than previously thought to steer diverse processes in plants. Using CapHensor in combination with electrophysiology and bioinformatics tools, I discovered distinct interconnections between [Ca2+]cyt and [H+]cyt in different cell types and distinct [Ca2+]cyt and [H+]cyt signals are initiated through diverse stimuli and environmental cues. The CapHensor will be very useful in the future to further investigate the coordinated role of Ca2+ and pH changes in controlling plant physiology.}, subject = {Pflanzen}, language = {en} } @phdthesis{SchliermanngebStratmann2023, author = {Schliermann [geb. Stratmann], Anna Theresa}, title = {The Role of FGF Receptor 2 in GDF5 mediated Signal Transduction}, doi = {10.25972/OPUS-19288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bone morphogenetic proteins (BMPs) are involved in various aspects of cell-cell communication in complex life forms. They act as morphogens, help differentiate different cell types from different progenitor cells in development, and are involved in many instances of intercellular communication, from forming a body axis to healing bone fractures, from sugar metabolism to angiogenesis. If the same protein or protein family carries out many functions, there is a demand to regulate and fine-tune their biological activities, and BMPs are highly regulated to generate cell- and context-dependent outcomes. Not all such instances can be explained yet. Growth/differentiation factor (GDF)5 (or BMP14) synergizes with BMP2 on chondrogenic ATDC5 cells, but antagonizes BMP2 on myoblastic C2C12 cells. Known regulators of BMP2/GDF5 signal transduction failed to explain this context-dependent difference, so a microarray was performed to identify new, cell-specific regulatory components. One identified candidate, the fibroblast growth factor receptor (FGFR)2, was analyzed as a potential new co-receptor to BMP ligands such as GDF5: It was shown that FGFR2 directly binds BMP2, GDF5, and other BMP ligands in vitro, and FGFR2 was able to positively influence BMP2/GDF5-mediated signaling outcome in cell-based assays. This effect was independent of FGFR2s kinase activity, and independent of the downstream mediators SMAD1/5/8, p42/p44, Akt, and p38. The elevated colocalization of BMP receptor type IA and FGFR2 in the presence of BMP2 or GDF5 suggests a signaling complex containing both receptors, akin to other known co-receptors of BMP ligands such as repulsive guidance molecules. This unexpected direct interaction between FGF receptor and BMP ligands potentially opens a new category of BMP signal transduction regulation, as FGFR2 is the second receptor tyrosine kinase to be identified as BMP co-receptor, and more may follow. The integration of cell surface interactions between members of the FGF and BMP family especially may widen the knowledge of such cellular communication mechanisms which involve both growth factor families, including morphogen gradients and osteogenesis, and may in consequence help to improve treatment options in osteochodnral diseases.}, subject = {Molekularbiologie}, language = {en} } @article{DeğirmenciRogeFerreiraVukosavljevicetal.2023, author = {Değirmenci, Laura and Rog{\´e} Ferreira, Fabio Luiz and Vukosavljevic, Adrian and Heindl, Cornelia and Keller, Alexander and Geiger, Dietmar and Scheiner, Ricarda}, title = {Sugar perception in honeybees}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.1089669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302284}, year = {2023}, abstract = {Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.}, language = {en} } @phdthesis{Lambour2023, author = {Lambour, Benjamin}, title = {Regulation of sphingolipid long-chain bases during cell death reactions and abiotic stress in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325916}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Sphingobasen (LCBs) sind die Bausteine der Biosynthese von Sphingolipiden. Sie werden als Strukturelemente der pflanzlichen Zellmembran definiert und spielen eine wichtige Rolle f{\"u}r das Schicksal der Zellen. Komplexe Ceramide machen einen wesentlichen Teil der gesamten Sphingolipide aus, die einen großen Teil der eukaryotischen Membranen bilden. Gleichzeitig sind LCBs bekannte Signalmolek{\"u}le f{\"u}r zellul{\"a}re Prozesse in Eukaryonten und sind an Signal{\"u}bertragungswegen in Pflanzen beteiligt. Es hat sich gezeigt, dass hohe LCB-Konzentrationen mit der Induktion des programmierten Zelltods sowie mit dem durch Pathogene ausgel{\"o}sten Zelltod in Verbindung stehen. Mehrere Studien haben die regulierende Funktion der Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen best{\"a}tigt: (i) Spontaner PCD und ver{\"a}nderte Zelltodreaktionen, die durch mutierte verwandte Gene des Sphingobasen-Stoffwechsels verursacht werden. (ii) Zelltodbedingungen erh{\"o}hen den Gehalt an LCBs. (iii) PCD aufgrund eines gest{\"o}rten Sphingolipid-Stoffwechsels, der durch von nekrotrophen Krankheitserregern produzierte Toxine wie Fumonisin B1 (FB1) hervorgerufen wird. Um den Zelltod zu verhindern und die Zelltodreaktion zu kontrollieren, kann daher die Regulierung des Gehalts an freien LCBs entscheidend sein. Die Ergebnisse der vorliegenden Studie stellten das Verst{\"a}ndnis der Sphingobasen und Sphingolipidspiegel w{\"a}hrend der PCD in Frage. Wir lieferten eine detaillierte Analyse der Sphingolipidspiegel, die Zusammenh{\"a}nge zwischen bestimmten Sphingolipidarten und dem Zelltod aufzeigte. Dar{\"u}ber hinaus erm{\"o}glichte uns die Untersuchung der Sphingolipid-Biosynthese ein Verst{\"a}ndnis des Fluxes nach Akkumulation hoher LCB-Konzentrationen. Weitere Analysen von Abbauprodukten oder Sphingolipid-Mutantenlinien w{\"a}ren jedoch erforderlich, um vollst{\"a}ndig zu verstehen, wie die Pflanze mit hohen Mengen an Sphingobasen umgeht.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Jaślan2023, author = {Jaślan, Justyna Joanna}, title = {R-type currents in \(Arabidopsis\) guard cells: properties and molecular nature}, doi = {10.25972/OPUS-18883}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In contrast to the well described molecular basis for S-type anion currents, the genes underlying R-type anion currents were unknown until 2010. Meyer S. and colleagues (2010) showed that, localized in the guard cell plasma membrane, AtALMT12 is an R-type anion channel involved in stomatal closure. However, knocking out AtALMT12 did not fully shut down R-type currents; the almt12 loss-of-function mutant has residual R-type-like currents indicating that ALMT12 is not the only gene encoding Arabidopsis thaliana R-type channels (Meyer S. et al., 2010). This PhD thesis is focussed on understanding the properties, regulation and molecular nature of the R-type channels in Arabidopsis thaliana plants. To fulfil these aims, the patch clamp technique was used to characterize electrical features of R-type currents in various conditions such as the presence/absence of ATP, variation in cytosolic calcium concentration or the presence of cytosolic chloride. Electrophysiological study revealed many similarities between the features of Arabidopsis thaliana R-type currents (Col0) and residual R-type currents (the almt12 loss-of-function mutant). Strong voltage dependency, channel activity in the same voltage range, position of maximal recorded current and blockage by cytosolic ATP all pointed to a shared phylogenetic origin of the channels underlying these R-type currents. Expression patterns of the ALMT family members for Col0 and the almt12 mutant revealed ALMT13 and AMT14 as potential candidates of the R-type channels. Electrical characterization of Col0, almt12 and the two double loss-of-function mutants (almt12/almt13 and almt12/almt14) strongly suggest that ALMT13 mediates the calcium-dependent R-type current component that is directly regulated by cytosolic calcium. Additionally, similarly to ALMT12, ALMT14 could participate as a calcium-independent R-type anion channel. Differences in response to the cytosolic calcium concentration between ALMT12, ALMT13 and ALMT14 suggest their possible involvement in different signalling pathways leading to stomatal closure. Moreover, a study performed for the two Arabidopsis thaliana ecotypes Col0 and WS showed drastically increased ALMT13 expression for WS, which is related to R-type current properties. The WS ecotype has calcium-dependent R-type current behaviour, while it is calcium-independent in Col0. Furthermore, this plant line showed lower peak current densities compared to Col0 and almt mutants. These facts strongly suggest interaction between ALMT12 and ALMT13, with ALMT13 as a repressor of the ALMT12. Acquired patch clamp data revealed sulphate-dependent increases in ALMT13 current. This could be caused by changes in absolute open probability and/or permeability for sulphate and possibly chloride and links ALMT13 with sulphate-mediated stomatal closure under drought stress. It was then confirmed that ATP affects R-type currents. In contrast to Vicia faba, ATP was identified as a negative regulator of the Arabidopsis thaliana R-type anion channels. The effect of ATP is ambiguous but there is a high probability that it is a result of direct block and phosphorylation. However, the phosphorylation site and place of ATP binding needs further investigation. The story of the ALMT family, as examined in this thesis, sheds light on the complexity of the stomatal closure process.}, language = {en} } @phdthesis{Fei2023, author = {Fei, Lin}, title = {Optogenetic regulation of osmolarity and water flux}, doi = {10.25972/OPUS-32309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Optogenetics is a powerful technique that utilizes light to precisely regulate physiological activities of neurons and other cell types. Specifically, light-sensitive ion channels, pumps or enzymes are expressed in cells to enable their regulation by illumination, thus allowing for precise control of biochemical signaling pathways. The first part of my study involved the construction, optimization, and characterization of two optogenetic tools, KCR1 and NCR1. Elena Govorunova et al. discovered a lightgated potassium channel, KCR1, in the protozoan Hyphochytrium catenoides. Traditional potassium ion channels are classified as either ligand-gated or voltage-gated and possess conserved pore-forming domains and K+ -selective filters. However, KCR1 is unique in that it does not contain the signature sequence of previously known K+ channels and is a channelrhodopsin. We synthesized the KCR1 plasmid according to the published sequence and expressed it in Xenopus oocytes. Due to the original KCR1 current being too small, I optimized it into KCR1 2.0 to improve its performance by fusing LR (signal peptide LucyRho, enhances expression) at the N-terminal and T (trafficking signal peptide) and E (ER export signal peptide) at the C-terminal. Additionally, I investigated the light sensitivity, action spectrum, and kinetics of KCR1 2.0 in Xenopus oocytes. The potassium permeability of KCR1 2.0, PK/Pna  24, makes KCR1 2.0 a powerful hyperpolarizing tool that can be used to inhibit neuronal firing in animals. Inspired by KCR1, we used the KCR1 sequence as a template for gene sequence alignment with the sequences in H. catenoides. We found that NCR1 and KCR1 have similar gene sequences. NCR1 was characterized by us as a light-gated sodium channel. This NCR1 was also characterized and published by Govorunova et al. very recently, with the name HcCCR. Due to the original NCR1 current being too small, I optimized it into NCR1 2.0 to improve its performance by fusing LR at the N-terminal and T and E at the C-terminal, which significantly improved the expression level and greatly increased the current amplitude of NCR1. Full-length NCR1 2.0 contains 432 amino acids. To test whether the number of amino acids changes the characteristics of NCR1 2.0, we designed NCR1 2.0 (330), NCR1 2.0 (283), and NCR1 2.0 (273) by retaining the number of amino acids at 330, 280, and 273 in NCR1 2.0, respectively. As the number of amino acids decreased, the current in NCR1 2.0 increased. I also investigated the light sensitivity, action spectrum, and kinetics of NCR1 2.0 (273) in the Xenopus Abstract 2 oocytes. We performed four point mutations at amino acid positions 133 and 116 of NCR1 2.0 and analyzed the reversal potentials of the mutants. The mutations were as follows: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), and NCR1 2.0 (283 D116Q). The second part of this study focuses on light-induced water transport using optogenetic tools. We explored the use of optogenetic tools to regulate water flow by changing the osmolarity in oocytes. Water flux through AQP1 is driven by the osmotic gradient that results from concentration differences of small molecules or ions. Therefore, we seek to regulate ion concentrations, using optogenetic tools to regulate the flux of water noninvasively. To achieve this, I applied the light-gated cation channels XXM 2.0 and NCR1 2.0 to regulate the concentration of Na+ , while K + channel KCR1 2.0 was used to regulate K + concentration. As Na+ flows into the Xenopus oocytes, the membrane potential of the oocytes becomes positive, and Clcan influx through the light-gated anion channel GtACR1. By combining these optogenetic tools to regulate NaCl or KCl concentrations, I can change the osmolarity inside the oocytes, thus regulating the flux of water. I co-expressed AQP1 with optogenetic tools in the oocytes to accelerate water flux. Overall, I designed three combinations (1: AQP1, XXM 2.0 and GtACR1. 2: AQP1, NCR1 2.0 and GtACR1. 3: AQP1, KCR1 2.0 and GtACR1) to regulate the flow of water in oocytes. The shrinking or swelling of the oocytes can only be achieved when AQP1, light-gated cation channels (XXM 2.0/NCR1 2.0/KCR1 2.0), and light-gated anion channels (GtACR1) are expressed together. The illumination after expression of either or both alone does not result in changes in oocyte morphology. In sum, I demonstrated a novel strategy to manipulate water movement into and out of Xenopus oocytes, non-invasively through illumination. These findings provide a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.}, subject = {Osmolarit{\"a}t}, language = {en} } @phdthesis{YuStrzelczyk2023, author = {Yu-Strzelczyk, Jing}, title = {Generation and Characterization of novel proteins for light-activated hyperpolarization of cell membranes}, doi = {10.25972/OPUS-26675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266752}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The light-gated cation channel Channelrhodopsin-2 was discovered and characterized in 2003. Already in 2005/2006 five independent groups demonstrated that heterologous expression of Channelrhodopsin-2 is a highly useful and simply applicable method for depolarizing and thereby activating nerve cells. The application of Channelrhodopsin-2 revolutionized neuroscience research and the method was then called optogenetics. In recent years more and more light-sensitive proteins were successfully introduced as "optogenetic tools", not only in neuroscience. Optogenetic tools for neuronal excitation are well developed with many different cation-conducting wildtype and mutated channelrhodopsins, whereas for inhibition of neurons in the beginning (2007) only hyperpolarizing ion pumps were available. The later discovered light-activated anion channels (anion channelrhodopsins) can be useful hyperpolarizers, but only at low cytoplasmic anion concentration. For this thesis, I optimized CsR, a proton-pumping rhodopsin from Coccomyxa subellipsoidea, which naturally shows a robust expression in Xenopus laevis oocytes and plant leaves. I improved the expression and therefore the photocurrent of CsR about two-fold by N-terminal modification to the improved version CsR2.0, without altering the proton pump function and the action spectrum. A light pulse hyperpolarised the mesophyll cells of CsR2.0-expressing transgenic tobacco plants (N. tabacum) by up to 20 mV from the resting membrane potential of -150 to -200 mV. The robust heterologous expression makes CsR2.0 a promising optogenetic tool for hyperpolarization in other organisms as well. A single R83H point-mutation converted CsR2.0 into a light-activated (passive) proton channel with a reversal potential close to the Nernst potential for intra-/extra-cellular H+ concentration. This light-gated proton channel is expected to become a further useful optogenetic tool, e.g. for analysis of pH-regulation in cells or the intercellular space. Ion pumps as optogenetic tools require high expression levels and high light intensity for efficient pump currents, whereas long-term illumination may cause unwanted heating effects. Although anion channelrhodopsins are effective hyperpolarizing tools in some cases, their effect on neuronal activity is dependent on the cytoplasmic chloride concentration which can vary among neurons. In nerve cells, increased conductance for potassium terminates the action potential and K+ conductance underlies the resting membrane potential in excitable cells. Therefore, several groups attempted to synthesize artificial light-gated potassium channels but 2 all of these published innovations showed serious drawbacks, ranging from poor expression over lacking reversibility to poor temporal precision. A highly potassium selective light-sensitive silencer of action potentials is needed. To achieve this, I engineered a light-activated potassium channel by the genetic fusion of a photoactivated adenylyl cyclase, bPAC, and a cAMP-gated potassium channel, SthK. Illumination activates bPAC to produce cAMP and the elevated cAMP level opens SthK. The slow diffusion and degradation of cAMP makes this construct a very light-sensitive, long-lasting inhibitor. I have successfully developed four variants with EC50 to cAMP ranging from 7 over 10, 21, to 29 μM. Together with the original fusion construct (EC50 to cAMP is 3 μm), there are five different light- (or cAMP-) sensitive potassium channels for researchersto choose, depending on their cell type and light intensity needs.}, subject = {Proteine}, language = {en} } @article{LuDreyerDickinsonetal.2023, author = {Lu, Jinping and Dreyer, Ingo and Dickinson, Miles Sasha and Panzer, Sabine and Jaślan, Dawid and Navarro-Retamal, Carlos and Geiger, Dietmar and Terpitz, Ulrich and Becker, Dirk and Stroud, Robert M. and Marten, Irene and Hedrich, Rainer}, title = {Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.86384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350264}, year = {2023}, abstract = {To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.}, language = {en} } @article{ThomasFiebigKuhnetal.2023, author = {Thomas, Sarah and Fiebig, Juliane E. and Kuhn, Eva-Maria and Mayer, Dominik S. and Filbeck, Sebastian and Schmitz, Werner and Krischke, Markus and Gropp, Roswitha and Mueller, Thomas D.}, title = {Design of glycoengineered IL-4 antagonists employing chemical and biosynthetic glycosylation}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {28}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350278}, pages = {24841-24852}, year = {2023}, abstract = {Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.}, language = {en} } @article{FaistAnkenbrandSickeletal.2023, author = {Faist, Hanna and Ankenbrand, Markus J. and Sickel, Wiebke and Hentschel, Ute and Keller, Alexander and Deeken, Rosalia}, title = {Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization}, series = {Genome Biology and Evolution}, volume = {15}, journal = {Genome Biology and Evolution}, number = {12}, doi = {10.1093/gbe/evad228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350172}, year = {2023}, abstract = {Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall-specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.}, language = {en} } @article{AmatobiOzbekUnalSchaebleretal.2023, author = {Amatobi, Kelechi M. and Ozbek-Unal, Ayten Gizem and Sch{\"a}bler, Stefan and Deppisch, Peter and Helfrich-F{\"o}rster, Charlotte and Mueller, Martin J. and Wegener, Christian and Fekete, Agnes}, title = {The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition}, series = {Journal of Lipid Research}, volume = {64}, journal = {Journal of Lipid Research}, number = {10}, doi = {10.1016/j.jlr.2023.100417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349961}, pages = {100417}, year = {2023}, abstract = {Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.}, language = {en} } @article{SexauerBhasinSchoenetal.2023, author = {Sexauer, Moritz and Bhasin, Hemal and Sch{\"o}n, Maria and Roitsch, Elena and Wall, Caroline and Herzog, Ulrike and Markmann, Katharina}, title = {A micro RNA mediates shoot control of root branching}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43738-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357472}, year = {2023}, abstract = {Plants extract mineral nutrients from the soil, or from interactions with mutualistic soil microbes via their root systems. Adapting root architecture to nutrient availability enables efficient resource utilization, particularly in patchy and dynamic environments. Root growth responses to soil nitrogen levels are shoot-mediated, but the identity of shoot-derived mobile signals regulating root growth responses has remained enigmatic. Here we show that a shoot-derived micro RNA, miR2111, systemically steers lateral root initiation and nitrogen responsiveness through its root target TML (TOO MUCH LOVE) in the legume Lotus japonicus, where miR2111 and TML were previously shown to regulate symbiotic infections with nitrogen fixing bacteria. Intriguingly, systemic control of lateral root initiation by miR2111 and TML/HOLT (HOMOLOGUE OF LEGUME TML) was conserved in the nonsymbiotic ruderal Arabidopsis thaliana, which follows a distinct ecological strategy. Thus, the miR2111-TML/HOLT regulon emerges as an essential, conserved factor in adaptive shoot control of root architecture in dicots.}, language = {en} } @article{SteinerZacharyBaueretal.2023, author = {Steiner, Thomas and Zachary, Marie and Bauer, Susanne and M{\"u}ller, Martin J. and Krischke, Markus and Radziej, Sandra and Klepsch, Maximilian and Huettel, Bruno and Eisenreich, Wolfgang and Rudel, Thomas and Beier, Dagmar}, title = {Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae}, series = {mBio}, volume = {14}, journal = {mBio}, doi = {10.1128/mbio.03093-22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313323}, year = {2023}, abstract = {Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C\(_1\)) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus.}, language = {en} } @phdthesis{Zhou2023, author = {Zhou, Yang}, title = {The Exploitation of Opsin-based Optogenetic Tools for Application in Higher Plants}, doi = {10.25972/OPUS-23696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The discovery, heterologous expression, and characterization of channelrhodopsin-2 (ChR2) - a light-sensitive cation channel found in the green alga Chlamydomonas reinhardtii - led to the success of optogenetics as a powerful technology, first in neuroscience. ChR2 was employed to induce action potentials by blue light in genetically modified nerve cells. In optogenetics, exogenous photoreceptors are expressed in cells to manipulate cellular activity. These photoreceptors were in the beginning mainly microbial opsins. During nearly two decades, many microbial opsins and their mutants were explored for their application in neuroscience. Until now, however, the application of optogenetics to plant studies is limited to very few reports. Several optogenetic strategies for plant research were demonstrated, in which most attempts are based on non-opsin optogenetic tools. Opsins need retinal (vitamin A) as a cofactor to generate the functional protein, the rhodopsin. As most animals have eyes that contain animal rhodopsins, they also have the enzyme - a 15, 15'-Dioxygenase - for retinal production from food-supplied provitamin A (beta-carotene). However, higher plants lack a similar enzyme, making it difficult to express functional rhodopsins successfully in plants. But plant chloroplasts contain plenty of beta-carotene. I introduced a gene, coding for a 15, 15'-Dioxygenase with a chloroplast target peptide, to tobacco plants. This enzyme converts a molecule of β-carotene into two of all-trans-retinal. After expressing this enzyme in plants, the concentration of all-trans-retinal was increased greatly. The increased retinal concentration led to increased expression of several microbial opsins, tested in model higher plants. Unfortunately, most opsins were observed intracellularly and not in the plasma membrane. To improve their localization in the plasma membrane, some reported signal peptides were fused to the N- or C-terminal end of opsins. Finally, I helped to identify three microbial opsins -- GtACR1 (a light-gated anion channel), ChR2 (a light-gated cation channel), PPR (a light-gated proton pump) which express and work well in the plasma membrane of plants. The transgene plants were grown under red light to prevent activation of the expressed opsins. Upon illumination with blue or green light, the activation of these opsins then induced the expected change of the membrane potential, dramatically changing the phenotype of plants with activated rhodopsins. This study is the first which shows the potential of microbial opsins for optogenetic research in higher plants, using the ubq10 promoter for ubiquitous expression. I expect this to be just the beginning, as many different opsins and tissue-specific promoters for selective expression now can be tested for their usefulness. It is further to be expected that the here established method will help investigators to exploit more optogenetic tools and explore the secrets, kept in the plant kingdom.}, language = {en} } @phdthesis{Kunz2023, author = {Kunz, Marcel}, title = {Diffusion kinetics of organic compounds and water in plant cuticular model wax under the influence of diffusing barrier-modifying adjuvants}, doi = {10.25972/OPUS-27487}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274874}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {To reach their target site, systemic pesticides must enter the plant from a spray droplet applied in the field. The uptake of an active ingredient (AI) takes place via the barrier-forming cuticular membrane, which is the outermost layer of the plant, separating it from the surrounding environment. Formulations are usually used which, in addition to the AI, also contain stabilizers and adjuvants. Adjuvants can either have surface-active properties or they act directly as barrier-modifying agents. The latter are grouped in the class of accelerating adjuvants, whereby individual variants may also have surface-active properties. The uptake of a pesticide from a spray droplet depends essentially on its permeability through the cuticular barrier. Permeability defines a combined parameter, which is the product of AI mobility and AI solubility within the cuticle. In recent decades, several tools have been developed that allowed the determination of individual parameters of organic compound penetration across the cuticular membrane. Nevertheless, earlier studies showed that mainly cuticular waxes are the barrier-determining component of the cuticular membrane and additionally, it was shown that mainly the very-long-chain aliphatic compounds (VLCAs) are responsible for establishing an effective barrier. However, the barrier-determining role of the individual VLCAs, being classified according to their respective functional groups, is still unknown. Therefore, the following objectives were pursued and achieved in this work: (1) A new ATR-FTIR-based approach was developed to measure the temperature-dependent real-time diffusion kinetics of organic models for active ingredients (AIs) in paraffin wax, exclusively consisting of very-long chain alkanes. (2) The developed ATR-FTIR approach was applied to determine the diffusion kinetics of self-accelerating adjuvants in cuticular model waxes of different VLCA composition. At the same time, wax-specific changes were recorded in the respective IR spectra, which provided information about the respective wax modification. (3) The ATR-FTIR method was used to characterize the diffusion kinetics, as well as to determine the wax-specific sorption capacities for an AI-modeling organic compound and water in cuticular model waxes after adjuvant treatment. Regarding the individual chemical compositions and structures, conclusions were drawn about the adjuvant-specific modes of action (MoA). In the first chapter, the ATR-FTIR based approach to determine organic compound diffusion kinetics in paraffin wax was successfully established. The diffusion kinetics of the AI modelling organic compounds heptyl parabene (HPB) and 4-cyanophenol (CNP) were recorded, comprising different lipophilicities and molecular volumes typical for AIs used in pesticide formulations. Derived diffusion coefficients ranged within 10-15 m2 s-1, thus being thoroughly higher than those obtained from previous experiments using an approach solely investigating desorption kinetics in reconstituted cuticular waxes. An ln-linear dependence between the diffusion coefficients and the applied diffusion temperature was demonstrated for the first time in cuticular model wax, from which activation energies were derived. The determined activation energies were 66.2 ± 7.4 kJ mol-1 and 56.4 ± 9.8 kJ mol-1, being in the expected range of already well-founded activation energies required for organic compound diffusion across cuticular membranes, which again confirmed the significant contribution of waxes to the cuticular barrier. Deviations from the assumed Fickian diffusion were attributed to co-occurring water diffusion and apparatus-specific properties. In the second and third chapter, mainly the diffusion kinetics of accelerating adjuvants in the cuticular model waxes candelilla wax and carnauba wax were investigated, and simultaneously recorded changes in the wax-specific portion of the IR spectrum were interpreted as indications of plasticization. For this purpose, the oil derivative methyl oleate, as well as the organophosphate ester TEHP and three non-ionic monodisperse alcohol ethoxylates (AEs) C12E2, C12E4 and C12E6 were selected. Strong dependence of diffusion on the respective principal components of the mainly aliphatic waxes was demonstrated. The diffusion kinetics of the investigated adjuvants were faster in the n-alkane dominated candelilla wax than in the alkyl ester dominated carnauba wax. Furthermore, the equilibrium absorptions, indicating equilibrium concentrations, were also higher in candelilla wax than in carnauba wax. It was concluded that alkyl ester dominated waxes feature higher resistance to diffusion of accelerating adjuvants than alkane dominated waxes with shorter average chain lengths due to their structural integrity. This was also found either concerning candelilla/policosanol (n-alcohol) or candelilla/rice bran wax (alkyl-esters) blends: with increasing alcohol concentration, the barrier function was decreased, whereas it was increased with increasing alkyl ester concentration. However, due to the high variability of the individual diffusion curves, only a trend could be assumed here, but significant differences were not shown. The variability itself was described in terms of fluctuating crystalline arrangements and partial phase separation of the respective wax mixtures, which had inevitable effects on the adjuvant diffusion. However, diffusion kinetics also strongly depended on the studied adjuvants. Significantly slower methyl oleate diffusion accompanied by a less pronounced reduction in orthorhombic crystallinity was found in carnauba wax than in candelilla wax, whereas TEHP diffusion was significantly less dependent on the respective wax structure and therefore induced considerable plasticization in both waxes. Of particular interest was the AE diffusion into both waxes. Differences in diffusion kinetics were also found here between candelilla blends and carnauba wax. However, these depended equally on the degree of ethoxylation of the respective AEs. The lipophilic C12E2 showed approximately Fickian diffusion kinetics in both waxes, accompanied by a drastic reduction in orthorhombic crystallinity, especially in candelilla wax, whereas the more hydrophilic C12E6 showed significantly retarded diffusion kinetics associated with a smaller effect on orthorhombic crystallinity. The individual diffusion kinetics of the investigated adjuvants sometimes showed drastic deviations from the Fickian diffusion model, indicating a self-accelerating effect. Hence, adjuvant diffusion kinetics were accompanied by a distinct initial lag phase, indicating a critical concentration in the wax necessary for effective penetration, leading to sigmoidal rather than to exponential diffusion kinetics. The last chapter dealt with the adjuvant-affected diffusion of the AI modelling CNP in candelilla and carnauba wax. Using ATR-FTIR, diffusion kinetics were recorded after adjuvant treatment, all of which were fully explicable based on the Fickian model, with high diffusion coefficients ranging from 10-14 to 10-13 m2 s-1. It is obvious that the diffusion coefficients presented in this work consistently demonstrated plasticization induced accelerated CNP mobilities. Furthermore, CNP equilibrium concentrations were derived, from which partition- and permeability coefficients could be determined. Significant differences between diffusion coefficients (mobility) and partition coefficients (solubility) were found on the one hand depending on the respective waxes, and on the other hand depending on treatment with respective adjuvants. Mobility was higher in candelilla wax than in carnauba wax only after methyl oleate treatment. Treatment with TEHP and AEs resulted in higher CNP mobility in the more polar alkyl ester dominated carnauba wax. The partition coefficients, on the other hand, were significantly lower after methyl oleate treatment in both candelilla and carnauba wax as followed by TEHP or AE treatment. Models were designed for the CNP penetration mode considering the respective adjuvants in both investigated waxes. Co-penetrating water, which is the main ingredient of spray formulations applied in the field, was likely the reason for the drastic differences in adjuvant efficacy. Especially the investigated AEs favored an enormous water uptake in both waxes with increasing ethoxylation level. Surprisingly, this effect was also found for the lipophilic TEHP in both waxes. This led to the assumption that the AI permeability is not exclusively determined by adjuvant induced plasticization, but also depends on a "secondary plasticization", induced by adjuvant-attracted co-penetrating water, consequently leading to swelling and drastic destabilization of the crystalline wax structure. The successful establishment of the presented ATR-FTIR method represents a milestone for the study of adjuvant and AI diffusion kinetics in cuticular waxes. In particular, the simultaneously detectable wax modification and, moreover, the determinable water uptake form a perfect basis to establish the ATR-FTIR system as a universal screening tool for wax-adjuvants-AI-water interaction in crop protection science.}, subject = {Pflanzen}, language = {en} } @phdthesis{Muralidhara2022, author = {Muralidhara, Prathibha}, title = {Perturbations in plant energy homeostasis alter lateral root plasticity via SnRK1-bZIP63-ARF19 signalling}, doi = {10.25972/OPUS-20563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Photosynthetic plants have a remarkable ability to modify their metabolism and development according to ever changing environmental conditions. The root system displays continuous growth of the primary root and formation of lateral roots enabling efficient water and nutrient uptake and anchorage of the plant in soil. With regard to lateral roots, development is post-embryonic, originating from the pericycle of the primary root. Coordinated activity of several molecular signalling pathways controlled by the hormone auxin is important throughout all stages of lateral root development.At first, two adjacent Xylem Pole Pericycle (XPP) cells are activated and the nuclei of these cells migrate towards a common cell wall.This is followed by XPP cells acquiring volume thus swelling up.The XPP cells then undergo anticlinal cell division, followed by a series of periclinal and anticlinal divisions,leading to lateral root primordia.These break through the radial cell layers and emerge out the primary root. Although root system plasticity is well-described in response to environmental cues such as ion nutrition in the soil, little is known on how root development is shaped according to the endogenous energy status of the plant.In this study, we were able to connect limited perturbations in photosynthetic energy supply to lateral root development.We established two experimental systems - treatment with low light and unexpected darkness which led to short-term energy imbalance in the plant.These short perturbations administered, showed an increase in the emerged lateral root density and decrease in root hexose availability and activation of the low energy marker gene ASN1 (ASPARAGINE SYNTHETASE 1).Although not demonstrated, presumably, these disturbances in the plant energy homeo-stasis activates SnRK1 (SNF1 RELATED KINASE 1),an evolutionary conserved kinase mediat-ing metabolic and transcriptional responses towards low energy conditions. In A. thaliana, two catalytic α-subunits of this kinase (SnRK1.α1 and SnRK1.α2) are functionally active and form ternary complexes with the regulatory β- and γ- subunits. Whereas unexpected darkness results in an increase in emerged lateral root density, the snrk1.α1 loss-of-function mutant displayed decrease in emerged lateral root density. As this effect is not that pronounced in the snrk1.α2 loss-of-function mutant, the α1 catalytic subunit is important for the observed lateral root phenotype under short-term energy perturbations. Moreover, root expression patterns of SnRK1.α1:GFP supports a role of this catalytic subunit in lateral root development. Furthermore, the lateral root response during short-term perturbations requires the SnRK1 downstream transcriptional regulator bZIP63 (BASIC LEU-CINE ZIPPER 63), as demonstrated here by a loss-of-function approach. Phenotypic studies showed that in comparison to wild-type, bzip63 mutants displayed decreased lateral root density upon low-light and unexpected darkness conditions. Previous work has demonstrat-ed that SnRK1 directly phosphorylates bZIP63 at three serine residues. Alanine-exchange mutants of the SnRK1 dependent bZIP63 phosphorylation sites behave similarly to bzip63 loss-of-function mutants and do not display increased lateral root density upon short-term unexpected darkness. This data strongly supports an impact of SnRK1-bZIP63 signalling in mediating the observed lateral root density phenotype. Plants expressing a bZIP63:YFP fu-sion protein showed specific localization patterns in primary root and in all developmental stages of the lateral root. bzip63 loss-of-function mutant lines displayed reduced early stage lateral root initiation events under unexpected darkness as demonstrated by Differen-tial Interference Contrast microscopy (DIC) and the use of a GATA23 reporter line. This data supports a role of bZIP63 in early lateral root initiation. Next, by employing Chromatin Immunoprecitation (ChIP) sequencing, we were able to iden-tify global binding targets of bZIP63, including the auxin-regulated transcription factor (TF) ARF19 (AUXIN RESPONSE FACTOR 19), a well-described central regulator of lateral root development. Additional ChIP experiments confirmed direct binding of bZIP63 to an ARF19 promoter region harboring a G-Box cis-element, a well-established bZIP63 binding site. We also observed that short-term energy perturbation upon unexpected darkness induced tran-scription of ARF19, which was impaired in the bzip63 loss-of-function mutant. These results propose that bZIP63 mediates lateral root development under short-term energy perturba-tion via ARF19. In conclusion, this study provides a novel mechanistic link between energy homeostasis and plant development. By employing reverse genetics, confocal imaging and high-throughput sequencing strategies, we were able to propose a SnRK1-bZIP63-ARF19 signalling module in integrating energy signalling into lateral root developmental programs.}, subject = {Arabidopsis thaliana}, language = {en} } @phdthesis{Yang2022, author = {Yang, Shang}, title = {Characterization and engineering of photoreceptors with improved properties for optogenetic application}, doi = {10.25972/OPUS-20527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205273}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Optogenetics became successful in neuroscience with Channelrhodopsin-2 (ChR2), a light-gated cation channel from the green alga Chlamydomonas reinhardtii, as an easy applicable tool. The success of ChR2 inspired the development of various photosensory proteins as powerful actuators for optogenetic manipulation of biological activity. However, the current optogenetic toolbox is still not perfect and further improvements are desirable. In my thesis, I engineered and characterized several different optogenetic tools with new features. (i) Although ChR2 is the most often used optogenetic actuator, its single-channel conductance and its Ca2+ permeability are relatively low. ChR2 variants with increased Ca2+ conductance were described recently but a further increase seemed possible. In addition, the H+ conductance of ChR2 may lead to cellular acidification and unintended pH-related side effects upon prolonged illumination. Through rational design, I developed several improved ChR2 variants with larger photocurrent, higher cation selectivity, and lower H+ conductance. (ii) The light-activated inward chloride pump NpHR is a widely used optogenetic tool for neural silencing. However, pronounced inactivation upon long time illumination constrains its application for long-lasting neural inhibition. I found that the deprotonation of the Schiff base underlies the inactivation of NpHR. Through systematically exploring optimized illumination schemes, I found illumination with blue light alone could profoundly increase the temporal stability of the NpHR-mediated photocurrent. A combination of green and violet light eliminates the inactivation effect, similar to blue light, but leading to a higher photocurrent and therefore better light-induced inhibition. (iii) Photoactivated adenylyl cyclases (PACs) were shown to be useful for light-manipulation of cellular cAMP levels. I developed a convenient in-vitro assay for soluble PACs that allows their reliable characterization. Comparison of different PACs revealed that bPAC from Beggiatoa is the best optogenetic tool for cAMP manipulation, due to its high efficiency and small size. However, a residual activity of bPAC in the dark is unwanted and the cytosolic localization prevents subcellular precise cAMP manipulation. I therefore introduced point mutations into bPAC to reduce its dark activity. Interestingly, I found that membrane targeting of bPAC with different linkers can remarkably alter its activity, in addition to its localization. Taken together, a set of PACs with different activity and subcellular localization were engineered for selection based on the intended usage. The membrane-bound PM-bPAC 2.0 with reduced dark activity is well-tolerated by hippocampal neurons and reliably evokes a transient photocurrent, when co-expression with a CNG channel. (iv) Bidirectional manipulation of cell activity with light of different wavelengths is of great importance in dissecting neural networks in the brain. Selection of optimal tool pairs is the first and most important step for dual-color optogenetics. Through N- and C-terminal modifications, an improved ChR variant (i.e. vf-Chrimson 2.0) was engineered and selected as the red light-controlled actuator for excitation. Detailed comparison of three two-component potassium channels, composed of bPAC and the cAMP-activated potassium channel SthK, revealed the superior properties of SthK-bP. Combining vf-Chrimson 2.0 and improved SthK-bP "SthK(TV418)-bP" could reliably induce depolarization by red light and hyperpolarization by blue light. A residual tiny crosstalk between vf-Chrimson 2.0 and SthK(TV418)-bP, when applying blue light, can be minimized to a negligible level by applying light pulses or simply lowering the blue light intensity.}, language = {en} } @phdthesis{Staiger2022, author = {Staiger, Simona}, title = {Chemical and physical nature of the barrier against active ingredient penetration into leaves: effects of adjuvants on the cuticular diffusion barrier}, doi = {10.25972/OPUS-19937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199375}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Agrochemicals like systemic active ingredients (AI) need to penetrate the outermost barrier of the plant, known as the plant cuticle, to reach its right target site. Therefore, adjuvants are added to provide precise and efficient biodelivery by i.a. modifying the cuticular barrier and increasing the AI diffusion. This modification process is depicted as plasticization of the cuticular wax which mainly consists of very long-chain aliphatic (VLCA) and cyclic compounds. Plasticization of cuticular waxes is pictured as an increase of amorphous domains and/or a decrease of crystalline fractions, but comprehensive, experimental proof is lacking to date. Hence, the objective of this thesis was to i) elucidate the permeation barrier of the plant cuticle to AIs in terms of the different wax fractions and ii) holistically investigate the modification of this barrier using selected oil and surface active adjuvants, an aliphatic leaf wax and an artificial model wax. Therefore, the oil adjuvant methyl oleate (MeO) and other oil derivatives like methyl linolenate (MeLin), methyl stearate (MeSt) and oleic acid (OA) were selected. Three monodisperse, non-ionic alcohol ethoxylates with increasing ethylene oxide monomer (EO) number (C10E2, C10E5, C10E8) were chosen as representatives of the group of surface active agents (surfactants). Both adjuvant classes are commonly used as formulation aids for agrochemicals which are known for its penetration enhancing effect. The aliphatic leaf wax of Schefflera elegantissima was selected, as well as a model wax comprising the four most abundant cuticular wax compounds of this species. Permeation, transpiration and penetration studies were conducted using enzymatically isolated cuticles of Prunus laurocerasus and Garcinia xanthochymus. Cuticular permeability to the three organic solutes theobromine, caffeine and azoxystrobin differing in lipophilicity was measured using a steady-state two-chamber system separated by the isolated leaf cuticles of the evergreen species P. laurocerasus and G. xanthochymus. Treating the isolated cuticles with methanol selectively removed the cyclic fraction, and membrane permeability to the organic compounds was not altered. In contrast, fully dewaxing the membranes using chloroform resulted in a statistically significant increase in permeance for all compounds and species, except caffeine with cuticles of G. xanthochymus due to a matrix-specific influence on the semi-hydrophilic compound. Crystalline regions may reduce the accessibility to the lipophilic pathway across the waxes and also block hydrophilic domains in the cuticle. Knowing that the aliphatic wax fraction builds the cuticular diffusion barrier, the influence of the adjuvants on the phase behaviour of an aliphatic cuticular wax as well as the influence on the cuticular penetration of AIs were investigated. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) were selected to investigate the phase behaviour and thus possible plasticization of pure Schefflera elegantissima leaf wax, its artificial model wax comprising the four most abundant compounds (n-nonacosane, n-hentriacontane, 1-triacontanol and 1-dotriacontanol) and wax adjuvant mixtures. DSC thermograms showed a shift of the melting ranges to lower temperatures and decreased absolute values of the total enthalpy of transition (EOT) for all adjuvant leaf wax blends at 50 \% (w/w) adjuvant proportion. The highest decrease was found for C10E2 followed by MeO > OA and C10E8 > MeLin > MeSt. The aliphatic crystallinity determined by FTIR yielded declined values for the leaf and the artificial wax with 50 \% MeO. All other adjuvant leaf wax blends did not show a significant decrease of crystallinity. As it is assumed that the cuticular wax is formed by crystalline domains which consist of aliphatic hydrocarbon chains and an amorphous fraction comprising aliphatic chain ends and functional groups, the plasticizers are depicted as wax disruptors influencing amorphization and/or crystallization. The adjuvants can increase crystalline domains using the aliphatic tail whereas their more hydrophilic head is embedded in the amorphous wax fraction. DSC and FTIR showed similar trends using the leaf wax and the model wax in combination with the adjuvants. In general, cuticular transpiration increased after adding the pure adjuvants to the surface of isolated cuticles or leaf envelopes. As waxes build the cuticular permeation barrier not only to AIs but also to water, the adjuvant wax interaction might affect the cuticular barrier properties leading to increased transpiration. Direct evidence for increased AI penetration with the adjuvants was given using isolated cuticles of P. laurocerasus in combination with the non-steady-state setup simulation of foliar penetration (SOFP) and caffeine at relative humidity levels (RH) of 30, 50 and 80 \%. The increase in caffeine penetration was much more pronounced using C10E5 and C10E8 than MeO but always independent of RH. Only C10E2 exhibited an increased penetration enhancing effect positively related to RH. The role of the molecular structure of adjuvants in terms of humectant and plasticizer properties are discussed. Hence, the current work shows for the first time that the cuticular permeation barrier is associated with the VLCAs rather than the cyclic fraction and that adjuvants structurally influence this barrier resulting in penetration enhancing effects. Additionally, this work demonstrates that an artificial model wax is feasible to mimic the wax adjuvant interaction in conformity with a leaf wax, making it feasible for in-vitro experiments on a larger scale (e.g. screenings). This provides valuable knowledge about the cuticular barrier modification to enhance AI penetration which is a crucial factor concerning the optimization of AI formulations in agrochemistry.}, subject = {Adjuvans}, language = {en} } @article{LuebbeLamarqueDelzonetal.2022, author = {L{\"u}bbe, Torben and Lamarque, Laurent J. and Delzon, Sylvain and Torres Ruiz, Jos{\´e} M. and Burlett, R{\´e}gis and Leuschner, Christoph and Schuldt, Bernhard}, title = {High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad-leaved tree species}, series = {Functional Ecology}, volume = {36}, journal = {Functional Ecology}, number = {3}, issn = {0269-8463}, doi = {10.1111/1365-2435.13975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318587}, pages = {699 -- 712}, year = {2022}, abstract = {Xylem hydraulic safety and efficiency are key traits determining tree fitness in a warmer and drier world. While numerous plant hydraulic studies have focused on branches, our understanding of root hydraulic functioning remains limited, although roots control water uptake, influence stomatal regulation and have commonly been considered as the most vulnerable organ along the hydraulic pathway. We investigated 11 traits related to xylem safety and efficiency along the hydraulic pathway in four temperate broad-leaved tree species. Continuous vessel tapering from coarse roots to stems and branches caused considerable reduction in hydraulic efficiency. Wood density was always lowest in roots, but did not decline linearly along the flow path. In contrast, xylem embolism resistance (P50) did not differ significantly between roots and branches, except for one species. The limited variation in xylem safety between organs did not adequately reflect the corresponding reductions in vessel diameter (by ~70\%) and hydraulic efficiency (by ~85\%). Although we did not observe any trade-off between xylem safety and specific conductivity, vessel diameter, vessel lumen fraction and wood density were related to embolism resistance, both across and partly within organs. We conclude that coarse roots are not highly vulnerable to xylem embolism as commonly believed, indicating that hydraulic failure during soil drying might be restricted to fine roots.}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} } @techreport{MuellerSchererLorenzenAmmeretal.2022, author = {M{\"u}ller, J{\"o}rg and Scherer-Lorenzen, Michael and Ammer, Christian and Eisenhauer, Nico and Seidel, Dominik and Schuldt, Bernhard and Biedermann, Peter and Schmitt, Thomas and K{\"u}nzer, Claudia and Wegmann, Martin and Cesarz, Simone and Peters, Marcell and Feldhaar, Heike and Steffan-Dewenter, Ingolf and Claßen, Alice and B{\"a}ssler, Claus and von Oheimb, Goddert and Fichtner, Andreas and Thorn, Simon and Weisser, Wolfgang}, title = {BETA-FOR: Erh{\"o}hung der strukturellen Diversit{\"a}t zwischen Waldbest{\"a}nden zur Erh{\"o}hung der Multidiversit{\"a}t und Multifunktionalit{\"a}t in Produktionsw{\"a}ldern. Antragstext f{\"u}r die DFG Forschungsgruppe FOR 5375}, doi = {10.25972/OPUS-29084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290849}, pages = {210}, year = {2022}, abstract = {Der in j{\"u}ngster Zeit beobachtete kontinuierliche Verlust der β-Diversit{\"a}t in {\"O}kosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was haupts{\"a}chlich auf die steigende Landnutzungsintensit{\"a}t zur{\"u}ckgef{\"u}hrt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilit{\"a}t von {\"O}kosystemen verkn{\"u}pft. Es ist daher zu erwarten, dass eine abnehmende β-Diversit{\"a}t auch die Multifunktionalit{\"a}t verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der {\"O}kologie, der Fernerkundung, der chemischen {\"O}kologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversit{\"a}tsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in W{\"a}ldern r{\"u}ckg{\"a}ngig zu machen. Konkret werden wir uns mit der Frage besch{\"a}ftigen, ob die Verbesserung der strukturellen β-Komplexit{\"a}t (ESBC) in W{\"a}ldern durch Waldbau oder nat{\"u}rliche St{\"o}rungen die Biodiversit{\"a}t und Multifunktionalit{\"a}t in ehemals homogenen Produktionsw{\"a}ldern erh{\"o}hen kann. Unser Ansatz wird m{\"o}gliche Mechanismen hinter den beobachteten Homogenisierungs-Diversit{\"a}ts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalit{\"a}t auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbest{\"a}nde als zwei kleine "Waldlandschaften" ausgew{\"a}hlt. In einem dieser beiden Best{\"a}nde haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgef{\"u}hrt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 {\"O}kosystemfunktionen, einschließlich der wichtigsten Funktionen in W{\"a}ldern der gem{\"a}ßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversit{\"a}t erm{\"o}glichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversit{\"a}t) quantifiziert werden. Um die Gesamtdiversit{\"a}t zu kombinieren, werden wir das Konzept der Multidiversit{\"a}t auf die 18 Taxa anwenden. Wir werden neue Ans{\"a}tze zur Quantifizierung und Aufteilung der Multifunktionalit{\"a}t auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversit{\"a}t und Multifunktionalit{\"a}t in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Dar{\"u}ber hinaus werden wir dazu beitragen, verbesserte Leitlinien f{\"u}r waldbauliche Konzepte und f{\"u}r das Management nat{\"u}rlicher St{\"o}rungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren.}, subject = {Wald{\"o}kosystem}, language = {en} } @article{ScherzerHuangIosipetal.2022, author = {Scherzer, S{\"o}nke and Huang, Shouguang and Iosip, Anda and Kreuzer, Ines and Yokawa, Ken and Al-Rasheid, Khaled A. S. and Heckmann, Manfred and Hedrich, Rainer}, title = {Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, doi = {10.1038/s41598-022-06915-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300411}, year = {2022}, abstract = {Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.}, language = {en} } @article{WeithmannLinkBanzragchetal.2022, author = {Weithmann, Greta and Link, Roman M. and Banzragch, Bat-Enerel and W{\"u}rzberg, Laura and Leuschner, Christoph and Schuldt, Bernhard}, title = {Soil water availability and branch age explain variability in xylem safety of European beech in Central Europe}, series = {Oecologia}, volume = {198}, journal = {Oecologia}, number = {3}, doi = {10.1007/s00442-022-05124-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324228}, pages = {629-644}, year = {2022}, abstract = {Xylem embolism resistance has been identified as a key trait with a causal relation to drought-induced tree mortality, but not much is known about its intra-specific trait variability (ITV) in dependence on environmental variation. We measured xylem safety and efficiency in 300 European beech (Fagus sylvatica L.) trees across 30 sites in Central Europe, covering a precipitation reduction from 886 to 522 mm year-1. A broad range of variables that might affect embolism resistance in mature trees, including climatic and soil water availability, competition, and branch age, were examined. The average P50 value varied by up to 1 MPa between sites. Neither climatic aridity nor structural variables had a significant influence on P50. However, P50 was less negative for trees with a higher soil water storage capacity, and positively related to branch age, while specific conductivity (Ks) was not significantly associated with either of these variables. The greatest part of the ITV for xylem safety and efficiency was attributed to random variability within populations. We conclude that the influence of site water availability on P50 and Ks is low in European beech, and that the high degree of within-population variability for P50, partly due to variation in branch age, hampers the identification of a clear environmental signal.}, subject = {Bodenwasser}, language = {en} } @article{deSouzaRiedererLeide2022, author = {de Souza, Aline Xavier and Riederer, Markus and Leide, Jana}, title = {Multifunctional contribution of the inflated fruiting calyx: implication for cuticular barrier profiles of the solanaceous genera Physalis, Alkekengi, and Nicandra}, series = {Frontiers in Plant Science}, volume = {13}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2022.888930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280251}, year = {2022}, abstract = {Pivotal barrier properties of the hydrophobic plant cuticle covering aerial plant surfaces depend on its physicochemical composition. Among plant species and organs, compounds of this boundary layer between the plant interior and the environment vary considerably but cuticle-related studies comparing different organs from the same plant species are still scarce. Thus, this study focused on the cuticle profiles of Physalis peruviana, Physalis ixocarpa, Alkekengi officinarum, and Nicandra physalodes species. Inflated fruiting calyces enveloping fruits make Physalis, Alkekengi, and Nicandra highly recognizable genera among the Solanoideae subfamily. Although the inflation of fruiting calyces is well discussed in the literature still little is known about their post-floral functionalities. Cuticular composition, surface structure, and barrier function were examined and compared in fully expanded amphistomatous leaves, ripe astomatous fruits, and fully inflated hypostomatous fruiting calyces. Species- and organ-specific abundances of non-glandular and glandular trichomes revealed high structural diversity, covering not only abaxial and adaxial leaf surfaces but also fruiting calyx surfaces, whereas fruits were glabrous. Cuticular waxes, which limit non-stomatal transpiration, ranged from <1 μg cm\(^{-2}\) on P. peruviana fruiting calyces and N. physalodes fruits to 22 μg cm\(^{-2}\) on P. peruviana fruits. Very-long-chain aliphatic compounds, notably n-alkanes, iso-, and anteiso-branched alkanes, alkanols, alkanoic acids, and alkyl esters, dominated the cuticular wax coverages (≥86\%). Diversity of cuticular wax patterns rose from leaves to fruiting calyces and peaked in fruits. The polymeric cutin matrix providing the structural framework for cuticular waxes was determined to range from 81 μg cm\(^{-2}\) for N. physalodes to 571 μg cm\(^{-2}\) for A. officinarum fruits. Cuticular transpiration barriers were highly efficient, with water permeabilities being ≤5 × 10\(^{-5}\) m s\(^{-1}\). Only the cuticular water permeability of N. physalodes fruits was 10 × 10\(^{-5}\) m s\(^{-1}\) leading to their early desiccation and fruits that easily split, whereas P. peruviana, P. ixocarpa, and A. officinarum bore fleshy fruits for extended periods after maturation. Regarding the functional significance, fruiting calyces establish a physicochemical shield that reduces water loss and enables fruit maturation within a protective microclimate, and promotes different seed dispersal strategies among plant species investigated.}, language = {en} } @article{LambourGlenzForneretal.2022, author = {Lambour, Benjamin and Glenz, Ren{\´e} and Forner, Carmen and Krischke, Markus and Mueller, Martin J. and Fekete, Agnes and Waller, Frank}, title = {Sphingolipid long-chain base phosphate degradation can be a rate-limiting step in long-chain base homeostasis}, series = {Frontiers in Plant Science}, volume = {13}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2022.911073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277679}, year = {2022}, abstract = {Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.}, language = {en} } @article{SiverinoFahmyGarciaMumcuogluetal.2022, author = {Siverino, Claudia and Fahmy-Garcia, Shorouk and Mumcuoglu, Didem and Oberwinkler, Heike and Muehlemann, Markus and Mueller, Thomas and Farrell, Eric and van Osch, Gerjo J. V. M. and Nickel, Joachim}, title = {Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to collagen-based microspheres induces bone formation in vivo}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073928}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284572}, year = {2022}, abstract = {For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.}, language = {en} } @phdthesis{Henninger2022, author = {Henninger, Markus}, title = {Funktion der zentralen metabolischen Kinase SnRK1 und von ihr abh{\"a}ngiger Transkriptionsfaktoren bei der Mobilisierung von Speicherstoffen w{\"a}hrend der \(Arabidopsis\) Keimlingsentwicklung}, doi = {10.25972/OPUS-21430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214305}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Pflanzen m{\"u}ssen sich w{\"a}hrend der Samenkeimung und Keimlingsentwicklung {\"u}ber eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil f{\"u}hren k{\"o}nnen. Diese Arbeit geht von der Hypothese aus, dass der evolution{\"a}r konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen w{\"a}hrend der Keimlingsentwicklung zukommt. W{\"a}hrend die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungekl{\"a}rt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminos{\"a}uren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivit{\"a}tsassays unterst{\"u}tzen eine m{\"o}gliche Funktion von SnRK1 w{\"a}hrend der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschr{\"a}nkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem fr{\"u}hen Entwicklungsstadium untermauert. Durch F{\"u}tterungsexperimente mit Glukose konnte der Ph{\"a}notyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der sp{\"a}- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verf{\"u}gbarkeit von freien Aminos{\"a}uren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass w{\"a}hrend der Keimlingsentwicklung zumindest in Arabidopsis, einer {\"o}lhaltigen Pflanze, zun{\"a}chst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminos{\"a}uren beginnt. Diese Abbauprodukte k{\"o}nnen dann der Glukoneogenese zugef{\"u}hrt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abh{\"a}ngige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminos{\"a}uren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abh{\"a}ngigen Genregulation w{\"a}hrend der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminos{\"a}uren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schl{\"u}sselenzym beim Abbau bestimmter Aminos{\"a}uren und bei der Glukoneogenese, SnRK1-abh{\"a}ngig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abh{\"a}ngig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopr{\"a}zipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminos{\"a}uren abgebaut und wird {\"u}ber die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell f{\"u}r die {\"U}bergangsphase zwischen heterotropher und autotropher Lebensweise, und tr{\"a}gt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zug{\"a}nglich zu machen. Dar{\"u}ber hinaus werden Gene im Abbau von verzweigtkettigen Aminos{\"a}uren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verf{\"u}gung gestellt. Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch w{\"a}hrend der Keimlingsentwicklung direkt von SnRK1 abh{\"a}ngig ist. Die umfangreichen Datens{\"a}tze der RNA-Seq-Analysen bieten zudem die M{\"o}glichkeit, weitere SnRK1-abh{\"a}ngige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verst{\"a}ndnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch f{\"u}r bessere Keimungsraten und somit bessere Ertr{\"a}ge in der Landwirtschaft genutzt werden k{\"o}nnen.}, subject = {SnRK1}, language = {de} } @article{KumarWaitePaligietal.2022, author = {Kumar, Manish and Waite, Pierre-Andr{\´e} and Paligi, Sharath Shyamappa and Schuldt, Bernhard}, title = {Influence of juvenile growth on xylem safety and efficiency in three temperate tree species}, series = {Forests}, volume = {13}, journal = {Forests}, number = {6}, issn = {1999-4907}, doi = {10.3390/f13060909}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278889}, year = {2022}, abstract = {The evolution of the internal water transport system was a prerequisite for high plant productivity. In times of climate change, understanding the dependency of juvenile growth on xylem hydraulic physiology is therefore of high importance. Here, we explored various wood anatomical, hydraulic, and leaf morphological traits related to hydraulic safety and efficiency in three temperate broadleaved tree species (Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia). We took advantage of a severe natural heat wave that resulted in different climatic growing conditions for even-aged plants from the same seed source growing inside a greenhouse and outside. Inside the greenhouse, the daily maximum vapour pressure deficit was on average 36\% higher than outside during the growing seasons. Because of the higher atmospheric moisture stress, the biomass production differed up to 5.6-fold between both groups. Except for one species, a high productivity was associated with a high hydraulic efficiency caused by large xylem vessels and a large, supported leaf area. Although no safety-efficiency trade-off was observed, productivity was significantly related to P\(_{50}\) in two of the tree species but without revealing any clear pattern. A considerable plasticity in given traits was observed between both groups, with safety-related traits being more static while efficiency-related traits revealed a higher intra-specific plasticity. This was associated with other wood anatomical and leaf morphological adjustments. We confirm that a high hydraulic efficiency seems to be a prerequisite for a high biomass production, while our controversial results on the growth-xylem safety relationship confirm that safety-efficiency traits are decoupled and that their relationship with juvenile growth and water regime is species-specific.}, language = {en} } @phdthesis{Schaebler2022, author = {Sch{\"a}bler, Stefan}, title = {Charakterisierung des circadianen Drosophila Metaboloms unter Zuhilfenahme massenspektrometrischer Methoden}, doi = {10.25972/OPUS-25190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251908}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die F{\"a}higkeit sich an die Rotation der Erde und den daraus resultierenden Tag- und Nacht-Rhythmus anzupassen, basiert auf einer komplexen Regulation verschiedener physiologischer Prozesse. Auf molekularer Ebene liegt diesen Prozessen eine Orchestration von Uhr-Genen zugrunde - auch als innere Uhr bezeichnet - die einen aktivierenden bzw. reprimierenden Einfluss auf die Expression einer Vielzahl weiterer Gene hat. Ausgehend von dieser Regulation lassen sich auf unterschiedlichsten Ebenen tageszeitabh{\"a}ngige, wiederkehrende Rhythmen beobachten. W{\"a}hrend diese wiederkehrenden Rhythmen auf einigen Ebenen bereits gut erforscht und beschrieben sind, gibt es weitere Ebenen wie den Metabolismus, {\"u}ber die das Wissen bisher noch begrenzt ist. So handelt es sich bei Drosophila beispielsweise um den Organismus, dessen innere Uhr auf molekularer Ebene wahrscheinlich mit am besten charakterisiert ist. Dennoch ist bisher nur wenig {\"u}ber Stoffklassen bekannt, deren Metabolismus durch die innere Uhr kontrolliert wird. Zwar konnte bereits gezeigt werden, dass sich eine gest{\"o}rte innere Uhr auf die Anlage der Energiespeicher auswirkt, inwiefern dies allerdings einen Einfluss auf dem intermedi{\"a}ren Stoffwechsel hat, blieb bisher weitgehend unerforscht. Auch die Frage, welche Metaboliten wiederkehrende, tageszeitabh{\"a}ngige Rhythmen aufweisen, wurde bisher nur f{\"u}r eine begrenzte Anzahl Metaboliten untersucht. Bei der hier durchgef{\"u}hrten Arbeit wurden deshalb zun{\"a}chst die globalen Metabolit-Profile von Fliegen mit einer auf molekularer Ebene gest{\"o}rten inneren Uhr (per01) mit Fliegen, die {\"u}ber eine funktionale Uhr verf{\"u}gen (CantonS), zu zwei Zeitpunkten verglichen. Um die Anzahl der zeitgleich untersuchten Gewebe und somit die Komplexit{\"a}t der Probe zu reduzieren, wurden hierf{\"u}r die K{\"o}pfe von den K{\"o}rpern der Fliegen getrennt und separat analysiert. Beide K{\"o}rperteile wurden sowohl auf kleine hydrophile als auch auf hydrophobe Metaboliten hin mittels UPLC-ESI-qTOF-MS untersucht. Die anschließend durchgef{\"u}hrte, statistische Analyse brachte hervor, dass sich Unterschiede zwischen den beiden Fliegenlinien besonders in den Spiegeln der essentiellen Aminos{\"a}uren, den Kynureninen, den Pterinaten sowie den Spiegeln der Glycero(phospho)lipiden und Fetts{\"a}ureester zeigten. Bei den Lipiden zeigte sich, dass die Auswirkungen weniger ausgepr{\"a}gt f{\"u}r die Anlage der Speicher- und Strukturlipide als f{\"u}r die Intermediate des Lipidabbaus, die Diacylglycerole (DAGs) sowie die Acylcarnitine (ACs), waren. Um zu best{\"a}tigen, dass die inneren Uhr tats{\"a}chlich einen regulatorischen Einfluss auf die ausgemachten Stoffwechselwege hat, wurden anschließend die Spiegel aller Mitglieder darauf hin untersucht, ob diese wiederkehrende, tageszeitabh{\"a}ngige Schwankungen aufweisen. Hierf{\"u}r wurden Proben alle zwei Stunden {\"u}ber drei aufeinanderfolgende Tage genommen und analysiert, bevor mittels JTK_CYCLE eine statistische Analyse der Daten durchgef{\"u}hrt und die Metaboliten herausgefiltert wurden, die ein rhythmisches Verhalten bei einer Periodenl{\"a}nge von 24h zeigten. Hierbei best{\"a}tigte sich, dass besonders die Mitglieder des intermedi{\"a}ren Lipidmetablismus hiervon betroffen waren. So konnten zwar auch f{\"u}r einige Aminos{\"a}uren robuste Rhythmen ausgemacht werden, besonders ausgepr{\"a}gt waren diese jedoch erneut bei den DAGs und den ACs. Die abschließende Untersuchung letzterer unter Freilaufbedingungen (DD) sowie in per01 brachte hervor, dass die ausgemachten Rhythmen unter diesen Bedingungen entweder nicht mehr detektiert werden konnten oder deutlich abgeschw{\"a}cht vorlagen. Lediglich zwei kurzkettige ACs zeigten auch unter DD-Bedingungen statistisch signifikante Rhythmen in ihren Spiegeln. Dies spricht daf{\"u}r, dass neben der Regulation durch die innere Uhr weitere Faktoren, wie beispielsweise das Licht, eine entscheidende Rolle zu spielen scheinen.}, subject = {Drosophila}, language = {de} } @phdthesis{vonRueden2022, author = {von R{\"u}den, Martin Frederik}, title = {The Venus flytrap - Role of oxylipins in trap performance of Dionaea muscipula}, doi = {10.25972/OPUS-27385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A part of the plant kingdom consists of a variety of carnivorous plants. Some trap their prey using sticky leaves, others have pitfall traps where prey cannot escape once it has fallen inside. A rare trap type is the snap-trap: it appears only twice in the plant kingdom, in the genera Aldrovanda and Dionaea. Even Charles Darwin himself described Dionaea muscipula, the Venus flytrap, with the following words "This plant, commonly called Venus' fly-trap, from the rapidity and force of its movements, is one of the most wonderful in the world". For a long time now, the mechanisms of Dionaea's prey recognition, capture and utilization are of interest for scientists and have been studied intensively. Dionaea presents itself with traps wide-open, ready to catch insects upon contact. For this, the insect has to touch the trigger hairs of the opened trap twice within about 20-30 seconds. Once the prey is trapped, the trap lobes close tight, forming a hermetically sealed "green stomach". Until lately, there was only limited knowledge about the molecular and hormonal mechanisms which lead to prey capture and excretion of digestive fluids. It is known that the digestion process is very water-consuming; therefore, the interplay of digestion-inducing and digestion inhibiting substances was to be analyzed in this work, to elucidate the fine-tuning of the digestive pathway. Special attention was given to the impact of phytohormones on mRNA transcript levels of digestion-related proteins after various stimuli as well as their effect on Dionaea's physiological responses. Jasmonic acid (JA) and its isoleucine-conjugated form, JA-Ile, are an important signal in the jasmonate pathway. In the majority of non-carnivorous plants, jasmonates are critical for the defense against herbivory and pathogens. In Dionaea, this defense mechanism has been restructured towards offensive prey catching. One question in this work was how the frequency of trigger hair bendings is related to the formation of jasmonates and the induction of the digestion process. Upon contact of a prey with the trigger hairs in the inside of the trap, the trap closes and jasmonates are produced biosynthetically. JA-Ile interacts with the COI1- receptor, thereby activating the digestion pathway which leads to the secretion of digestive fluid and production of transporters needed to take up prey-derived nutrients. In this work it could be shown that the number of trigger hair bendings is positively correlated with the level and duration of transcriptional induction of several digestive enzymes/hydrolases. Abscisic acid (ABA) acts, along with many other functions, as the plant "drought stress hormone". It is synthesized either by roots as the primary sensor for water shortage or by guard cells in the leaves. ABA affects a network of several thousand genes whose regulation prepares the plant for drought and initiates protective measurements. It was known from previous work that the application of ABA for 48 hours increased the required amount of trigger hair bendings to achieve trap closure. As the digestion process is very water-intensive, the question arose how exactly the interplay between the jasmonate- and the ABA-pathway is organized, and if ABA could stop the running digestion process once it had been activated. In the present work it could be shown that the application of ABA on intact traps prior to mechanically stimulating the trigger hairs (mechanostimulation) already significantly reduced the transcription of digestive enzymes for an incubation time as short as 4 h, showing that already short-term exposure to ABA counteracts the effects of jasmonates when it comes to initiating the digestion process, but does not inhibit trap closure. Incubation for 24 and 48 hours with 100 μM active ABA had no effect on trap reopening, only very high levels of 200 μM of active ABA inhibited trap reopening but also led to tissue necrosis. As the application of ABA could reduce the transcription of digestive hydrolases, it is likely that Dionaea can stop the digestion process, if corresponding external stimuli are received. Another factor, which only emerged later, was the effect of the wounding-induced systemic jasmonate burst. As efficient as ABA was in inhibiting marker hydrolase expression after mechanostimulation in intact plants, the application of ABA on truncated traps was not able to inhibit mechanostimulation-induced marker hydrolase expression. One reason might be that the ABA-signal is perceived in the roots, and therefore truncated traps were not able to react to it. Another reason might be that the wounding desensitized the tissue for the ABAsignal. Further research is required at this point. Inhibitors of the jasmonate pathway were also used to assess their effect on the regulation of Dionaea´s hunting cycle. Coronatine-O-methyloxime proved to be a potent inhibitor of mechanostimulation-induced expression of digestive enzymes, thus confirming the key regulatory role of jasmonates for Dionaea´s prey consumption mechanism. In a parallel project, the generation of in vitro cultures from sterilized seeds and single plant parts proved successful, which may be important for stock-keeping of future transgenic lines. Protoplasts were generated from leaf blade tissue and transiently transformed, expressing the reporter protein YFP after 24 h of incubation. In the future this might be the starting point for the generation of transgenic lines or the functional testing of DNA constructs.}, subject = {Venusfliegenfalle}, language = {en} } @phdthesis{vonMeyer2021, author = {von Meyer, Katharina}, title = {Molecular characterization of defensin-like proteins in the fertilization process of \(Nicotiana\) \(tabacum\)}, doi = {10.25972/OPUS-19214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192141}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Flowering plants or angiosperms have developed a fertilization mechanism that involves a female egg and central cell, as well as two male sperm cells. A male gametophyte carries the two non-mobile sperm cells, as they need to be delivered to the female gametophyte, the embryo sac. This transport is initiated by a pollen grain that is transmitted onto the stigma of the angiosperm flower. Here it hydrates, germinates, and forms a pollen tube, which navigates through the female plant tissue towards the ovary. The pollen tube grows into an ovule through the funiculus and into one of the two synergid cells. There, growth arrests and the pollen tube bursts, releasing the two sperm cells. One of the sperm cells fuses with the egg cell, giving rise to the embryo, the other one fuses with the central cell, developing into the endosperm, which nourishes the embryo during its development. After a successful fertilization, each ovule develops into a seed and a fruit is formed. This usually consists of several fertilized ovules. The directional growth of the pollen tube through the maternal tissues towards the ovule, as well as sperm cell release, requires a complex communication between the male and the female gametophyte to achieve reproductive success. Over the last years many studies have been performed, contributing to the understanding of cell-cell communication events between the two gametophytes, nevertheless still many aspects remain to be elucidated. This work focused on two topics: i.) Analysis of biological processes affected by pollination and fertilization in the Nicotiana tabacum flower and identification of cysteine rich proteins (CRPs) expressed via isolating and sequencing RNA from the tissue and analyzing the resulting data. ii.) Identification of the defensin-like protein (DEFL) responsible for pollen tube attraction towards the ovule in tobacco. First, tissue samples of pollen tubes and mature ovules were taken at different stages of the fertilization process (unpollinated ovules, after pollination, and after fertilization of the flower). RNA was then isolated and a transcriptome was created. The resulting reads were assembled and transcriptome data analysis was performed. Results showed that pollen tubes and mature ovules differ severely from each other, only sharing about 23 \% of the transcripts, indicating that different biological processes are dominant in the two gametophytes. A MapMan analysis revealed that in the pollen tube the most relevant biological processes are related to the cell wall, signaling, and transport, which supports the fact that the pollen tube grows fast to reach the ovule. On the other hand, in the ovule the values of highest significance were obtained for processes related to protein synthesis and regulation. Upon comparing the transcripts in the ovule before and after pollination, as well as after fertilization, it showed that pollination of the flower causes a bigger alteration in the ovule on the transcriptomic level compared to the step from pollination to fertilization. A total of 953 CRPs were identified in Nicotiana tabacum, including 116 DEFLs. Among those, the peptide responsible for pollen tube attraction towards the ovule should be found. Based on in-silico analysis four candidate peptides were chosen for further analysis, two of which had increased expression levels upon pollination and fertilization and the other two displayed an opposite expression. Quantitative real time PCR experiments were performed for the candidates, confirming the in-silico data in vivo. The candidate transcripts were then expressed in a cell free system and applied to pollen tubes in order to test their effect on the growing cells. Positive controls were used, where pollen tubes grew towards freshly dissected ovules. The four candidates did not provoke a pollen tube attraction towards the peptide, leaving open the chance to work on the 112 remaining DEFLs in the future.}, subject = {Samenpflanzen}, language = {en} } @phdthesis{Lange2021, author = {Lange, Manuel}, title = {Mutanten im RES-Oxylipin Signalweg von \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-16608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Reaktive elektrophile Spezies-Oxylipine (RES-Oxylipine) finden sich in Pflanzen- und Tierzellen und zeichnen sich durch eine f{\"u}r sie typische Anordnung von Atomen aus: einer α,β unges{\"a}ttigten Carbonyl Gruppe. In Pflanzenzellen geh{\"o}ren unter anderem 2-(E)-Hexenal und die Vorstufe der Jasmons{\"a}ure 12-Oxophytodiens{\"a}ure (OPDA) zu den RES-Oxylipinen, in Tierzellen z.B. Prostaglandin A1 (PGA). RES-Oxylipine {\"u}ben Signalfunktionen aus, wie dies in Pflanzenzellen funktioniert ist jedoch noch nicht bekannt. Ziel dieser Arbeit ist dabei einen m{\"o}glichen RES-Oxylipin Signalweg aufzukl{\"a}ren und die beteiligten Gene zu identifizieren. Es konnte aber gezeigt werden, dass die Expressionsrate von bestimmten Genen wie z.B. GST6 durch RES-Oxylipine spezifisch induziert wird. Zur Untersuchung des RES-Oxylipin Signalweges wurde der GST6 Promotor vor das Luciferase-Gen fusioniert, um so ein RES-Oxylipin spezifisches Reportersystem zu erhalten. Die Ethylmethansulfonat mutagenisierten Linien wurden auf ge{\"a}nderte Luciferase-Aktivit{\"a}t hin untersucht. Dabei wurden drei Mutanten isoliert, die in dieser Arbeit n{\"a}her untersucht wurden. Eine zeigte basal erh{\"o}hte Luciferase-Aktivit{\"a}t (constitutive overexpresser 3 = coe3) und die anderen beiden erniedrigte Luciferase-Aktivit{\"a}t nach PGA Gabe (non responsive 1 und 2 = nr1 und nr2). In dieser Arbeit konnte gezeigt werden, dass die Ph{\"a}notypen in allen 3 Mutanten rezessiv vererbt werden und die Mutanten nicht zueinander allel sind. Zudem war die ver{\"a}nderte Luciferase-Aktivit{\"a}t nicht durch ge{\"a}nderte Phytohormonspiegel oder durch Mutationen im GST6 Promotor erkl{\"a}rbar. Auf die Gabe von RES, wie Benzylisothiocyanat oder Sulforaphan, sowie auf endogene RES-Oxylipine, wie OPDA und Hexenal, reagierten die Mutanten auf {\"a}hnliche Weise, wie nach PGA Gabe. Weiterf{\"u}hrende Untersuchungen zeigten, dass sich die drei Mutanten stark voneinander unterschieden. Das Transkriptom kontrollbehandelter coe3 Pflanzen unterschied sich stark von dem der GST6::LUC Pflanzen. Die Mutante war trockenstressresistenter zudem war sie sensibler gegen{\"u}ber NaCl, was jedoch nicht von einer ver{\"a}nderten Reaktion auf Abscisins{\"a}ure herr{\"u}hrte. Des Weiteren war der Chlorophyllabbau bei dunkel inkubierten Bl{\"a}ttern geringer. Bei der Lokalisierung der Mutation, die noch nicht abgeschlossen ist, konnten Chromosom 2 und 5 als die wahrscheinlichsten Kandidaten ermittelt werden. Weitere Analysen sind n{\"o}tig um den Bereich weiter eingrenzen zu k{\"o}nnen. Die Mutante nr1, die sich durch verminderte Reaktion auf RES-Oxylipine auszeichnete, zeigte einen kleineren Wuchs und ein deutlich verz{\"o}gertes Bl{\"u}hen. Außerdem wies die Mutante erh{\"o}hte Argininspiegel in ihren Bl{\"a}ttern auf. Das Transkriptom unterschied sich sowohl bei kontrollbehandelten, als auch bei PGA behandelten nr1 Pflanzen massiv von denen der gleichbehandelten Kontrollen. Auch die nr1 schien trockenstressresistenter zu sein, sie war im Gegensatz zur coe3 aber robuster gegen{\"u}ber h{\"o}heren Konzentrationen an NaCl. Mit Hilfe eines „Next Generation Genome-Mappings" war es m{\"o}glich die Mutation am Ende von Chromosom 3 zu lokalisieren und auf f{\"u}nf m{\"o}gliche Gene einzugrenzen. Weitere Untersuchungen m{\"u}ssen nun kl{\"a}ren, welches dieser Gene urs{\"a}chlich f{\"u}r den Ph{\"a}notyp der ge{\"a}nderten Luciferase-Aktivit{\"a}t ist. Die zweite Mutante mit einer reduzierten Reaktion auf RES-Oxylipine war die nr2. {\"U}berraschender Weise unterschied sich das Transkriptom kontrollbehandelter nr2 Pflanzen deutlich st{\"a}rker von dem der gleichbehandelten GST6::LUC Pflanzen, als das nach PGA Gabe der Fall war. Sie reagierte nur mit sehr schwacher Luciferase-Aktivit{\"a}t auf Verwundung und war zudem deutlich sensibler gegen{\"u}ber Trockenheit. F{\"u}r eine zuk{\"u}nftige Lokalisation der urs{\"a}chlichen Mutation wurden entsprechende Kreuzungen durchgef{\"u}hrt aus deren Samen jederzeit mit einer Selektionierung begonnen werden kann. Mit dieser Arbeit konnte ein erster großer Schritt in Richtung Identifikation der, f{\"u}r die ge{\"a}nderte Luciferase-Aktivit{\"a}t, verantwortlichen Mutation gemacht werden, sowie erste Reaktionen der Mutanten auf abiotische Stressfaktoren untersucht werden. Somit ist man der Entdeckung von Signaltransduktionsfaktoren, die RES-Oxylipinabh{\"a}ngig reguliert werden, einen wichtigen Schritt n{\"a}her gekommen.}, subject = {Arabidopsis thaliana}, language = {de} } @phdthesis{Thomas2021, author = {Thomas, Sarah Katharina}, title = {Design of novel IL-4 antagonists employing site-specific chemical and biosynthetic glycosylation}, doi = {10.25972/OPUS-17517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cytokines interleukin 4 (IL-4) and IL-13 are important mediators in the humoral immune response and play a crucial role in the pathogenesis of chronic inflammatory diseases, such as asthma, allergies, and atopic dermatitis. Hence, IL-4 and IL-13 are key targets for treatment of such atopic diseases. For cell signalling IL-4 can use two transmembrane receptor assemblies, the type I receptor consisting of receptors IL-4R and γc, and type II receptor consisting of receptors IL-4R and IL-13R1. The type II receptor is also the functional receptor of IL-13, receptor sharing being the molecular basis for the partially overlapping effects of IL-4 and IL-13. Since both cytokines require the IL-4R receptor for signal transduction, this allows the dual inhibition of both IL-4 and IL-13 by specifically blocking the receptor IL-4R. This study describes the design and synthesis of novel antagonistic variants of human IL-4. Chemical modification was used to target positions localized in IL-4 binding sites for γc and IL-13R1 but outside of the binding epitope for IL-4R. In contrast to existing studies, which used synthetic chemical compounds like polyethylene glycol for modification of IL-4, we employed glycan molecules as a natural alternative. Since glycosylation can improve important pharmacological parameters of protein therapeutics, such as immunogenicity and serum half-life, the introduced glycan molecules thus would not only confer a steric hindrance based inhibitory effect but simultaneously might improve the pharmacokinetic profile of the IL-4 antagonist. For chemical conjugation of glycan molecules, IL-4 variants containing additional cysteine residues were produced employing prokaryotic, as well as eukaryotic expression systems. The thiol-groups of the engineered cysteines thereby allow highly specific modification. Different strategies were developed enabling site-directed coupling of amine- or thiol- functionalized monosaccharides to introduced cysteine residues in IL-4. A linker-based coupling procedure and an approach requiring phenylselenyl bromide activation of IL-4 thiol-groups were hampered by several drawbacks, limiting their feasibility. Surprisingly, a third strategy, which involved refolding of IL-4 cysteine variants in the presence of thiol- glycans, readily allowed synthesis of IL-4 glycoconjugates in form of mixed disulphides in milligram amount. This approach, therefore, has the potential for large-scale synthesis of IL-4 antagonists with highly defined glycosylation. Obtaining a homogenous glycoconjugate with exactly defined glycan pattern would allow using the attached glycan structures for fine-tuning of pharmacokinetic properties of the IL-4 antagonist, such as absorption and metabolic stability. The IL-4 glycoconjugates generated in this work proved to be highly effective antagonists inhibiting IL-4 and/or IL-13 dependent responses in cell-based experiments and in in vitro binding studies. Glycoengineered IL-4 antagonists thus present valuable alternatives to IL-4 inhibitors used for treatment of atopic diseases such as the neutralizing anti-IL-4R antibody Dupilumab.}, subject = {Glykosylierung}, language = {en} } @phdthesis{BergmannBueno2021, author = {Bergmann Bueno, Amauri}, title = {Ecophysiological adaptations of cuticular water permeability of plants to hot arid biomes}, doi = {10.25972/OPUS-16783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Arid environments cover almost one-third of the land over the world. Plant life in hot arid regions is prone to the water shortage and associated high temperatures. Drought-stressed plants close the stomata to reduce water loss. Under such conditions, the remaining water loss exclusively happens across the plant cuticle. The cuticular water permeability equals the minimum and inevitable water loss from the epidermal cells to the atmosphere under maximally stomatal closure. Thus, low cuticular water permeability is primordial for plant survival and viability under limited water source. The assumption that non-succulent xerophytes retard water loss due to the secretion of a heavier cuticle is often found in the literature. Intuitively, this seems to be plausible, but few studies have been conducted to evaluate the cuticular permeability of xerophilous plants. In chapter one, we investigated whether the cuticular permeability of Quercus coccifera L. grown in the aridest Mediterranean-subtype climate is indeed lower than that of individuals grown under temperate climate conditions. Also, the cuticular wax chemical compositions of plants grown in both habitats were qualitatively and quantitatively analysed by gas-chromatography. In few words, our findings showed that although the cuticular wax deposition increased in plants under Mediterranean climate, the cuticular permeability remained unaltered, regardless of habitat. The associated high temperatures in arid regions can drastically increase the cuticular water permeability. Thereby, the thermal stability of the cuticular transpirational barrier is decisive for safeguarding non-succulent xerophytes against desiccation. The successful adaptation of plants to hot deserts might be based on finding different solutions to cope with water and heat stresses. Water-saver plants close the stomata before the leaf water potential drastically changes in order to prevent damage, whereas water-spender plants reduce the leaf water potential by opening the stomata, which allow them to extract water from the deep soil to compensate the high water loss by stomatal transpiration. In chapter two, we compare the thermal stability of the cuticular transpiration barrier of the desert water-saver Phoenix dactylifera L. and the water-spender Citrullus colocynthis (L.) Schrad. In short, the temperature-dependent increase of the cuticular permeability of P. dactylifera was linear over the whole temperature range (25-50°C), while that of C. colocynthis was biphasic with a steep increase at temperatures ≥ 40°C. This drastic increase of cuticular permeability indicates a thermally induced breakdown of the C. colocynthis cuticular transpiration barrier, which does not occur in P. dactylifera. We further discussed how the specific chemical composition of the cutin and cuticular waxes might contribute to the pronounced thermal resistance of the P. dactylifera cuticular transpiration barrier. A multitude of morpho and physiological modifications, including photosynthetic thermal tolerance and traits related to water balance, led to the successful plant colonisation of hot arid regions over the globe. High evaporative demand and elevated temperatures very often go along together, thereby constraining the plant life in arid environments. In chapter 3, we surveyed cuticular permeability, leaf thermal tolerance, and cuticular wax chemical composition of 14 non-succulent plant species native from some of the hottest and driest biomes in South-America, Europe, and Asia. Our findings showed that xerophilous flowering plants present high variability for cuticular permeability and leaf thermal tolerance, but both physiological features could not be associated with the species original habitat. We also provide substantial evidence that non-succulent xerophytes with more efficient cuticular transpirational barrier have higher leaf thermal tolerance, which might indicate a potential coevolution of these features in hot arid biomes. We further discussed the efficiency of the cuticular transpiration barrier in function to the cuticular wax chemical composition in the general discussion section.}, subject = {Plant cuticle}, language = {en} } @phdthesis{Mueller2021, author = {M{\"u}ller, Heike Milada}, title = {Anpassung an Trocken- und Salzstress: Untersuchungen an Modellpflanzen und Extremophilen}, doi = {10.25972/OPUS-17900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die wahrscheinlich gr{\"o}ßten Probleme des 21. Jahrhunderts sind der Klimawandel und die Sicherstellung der Nahrungsmittelversorgung f{\"u}r eine steigende Zahl an Menschen. Durch die Zunahme von extremen Wetterbedingungen wie Trockenheit und Hitze wird der Anbau konventioneller, wenig toleranter Nutzpflanzen erschwert und die dadurch notwendige, steigende Bew{\"a}sserung der Fl{\"a}chen f{\"u}hrt dar{\"u}ber hinaus zu einer zus{\"a}tzlichen Versalzung der B{\"o}den mit f{\"u}r Pflanzen toxischen Natrium- und Chlorid-Ionen. Kenntnisse {\"u}ber Anpassungsstrategien salztoleranter Pflanzen an Salzstress, aber auch detailliertes Wissen {\"u}ber die Steuerung der Transpiration und damit des Wasserverlusts von Pflanzen sind daher wichtig, um auch k{\"u}nftig ertragreiche Landwirtschaft betreiben zu k{\"o}nnen. In dieser Arbeit habe ich verschiedene Aspekte der pflanzlichen Stressphysiologie bearbeitet, die im Folgenden getrennt voneinander zusammengefasst werden. I. Funktionelle Unterschiede der PYR/PYL-Rezeptoren von Schließzellen Entscheidend f{\"u}r den Wasserstatus von Pflanzen ist die Kontrolle des Wasserverlusts durch Spalt{\"o}ffnungen (Stomata), die von einem Paar Schließzellen gebildet werden. Externe Faktoren wie Licht, Luftfeuchtigkeit und CO2, sowie interne Faktoren wie das Phytohormon Abszisins{\"a}ure (ABA) regulieren {\"u}ber Signalkaskaden die Stomaweite und dadurch den Wasserverlust. Die zugrunde liegenden Signalkaskaden {\"u}berlappen teilweise. Vor allem der Stomaschluss durch erh{\"o}htes CO2 und ABA weisen viele Gemeinsamkeiten auf und die Identifizierung des Konvergenzpunktes beider Signale ist immer noch aktueller Gegenstand der Forschung. Von besonderem Interesse sind dabei die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie. Denn obwohl bislang nicht nachgewiesen werden konnte, dass CO2 zu einem Anstieg des ABA-Gehalts von Schließzellen f{\"u}hrt deuten einige Studien darauf hin, dass die ABA-Rezeptoren selbst am CO2-Signalweg beteiligt sind. Durch Untersuchungen der Stomareaktion von Arabidopsis ABA-Rezeptormutanten konnte ich in dieser Arbeit zeigen, dass die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie funktionale Unterschiede aufweisen. F{\"u}nffach-Verlustmutanten der ABA-Rezeptoren PYR1, PYL2, 4, 5 und 8 (12458) waren in ihrem ABA-induzierten Stomaschluss beeintr{\"a}chtigt und nur die Komplementation mit PYL2 und in geringerem Maße PYR1 konnte die ABA-Sensitivit{\"a}t wiederherstellen. Die Stomata von 12458-Verlustmutanten waren außerdem insensitiv gegen{\"u}ber erh{\"o}htem CO2, was auf eine Beteiligung der ABA-Rezeptoren am CO2-induzierten Stomaschluss hindeutet und diese Sensitivit{\"a}t konnte nur durch die Komplementation mit PYL4 oder PYL5, nicht aber mit PYL2 wiederhergestellt werden. Somit konnten in dieser Arbeit erstmals funktionelle Unterschiede der PYR/PYLs beim Stoma-Schluss nachgewiesen werden. Alle externen und internen Stomaschluss-Signale haben außerdem Einfluss auf die Genexpression der Schließzellen und f{\"u}hren zu individuellen expressionellen Adaptionen. In vorangegangenen Microarray Studien konnte gezeigt werden, dass jeder Stimulus auch die Expression eines distinkten Sets an ABA-Rezeptoren beeinflusst. Im Rahmen dieser Arbeit konnte ich außerdem zeigen, dass die Expression der ABA-Rezeptoren bereits auf kleine {\"A}nderungen der ABA-Konzentration der Schließzellen reagiert und dass diese sich außerdem in ihrer Sensitivit{\"a}t gegen{\"u}ber ABA unterschieden. Geringe {\"A}nderungen der ABA-Konzentration von Schließzellen haben demnach Auswirkungen auf deren Rezeptor-zusammensetzung. Dar{\"u}ber hinaus konnte ich zeigen, dass die Rezeptoren die Expression unterschiedlicher nachgeschalteter Gene beeinflussen, was darauf hindeutet, dass Anpassungen des Rezeptorpools durch geringe {\"A}nderungen des ABA-Gehalts von Schließzellen schlussendlich auf genexpressioneller Ebene zur l{\"a}ngerfristigen Adaption an externe Bedingungen f{\"u}hren und die Rezeptoren auch hier funktional verschieden sind. II. Stomat{\"a}re Besonderheiten der toleranten Dattelpalme (Phoenix dactylifera) Dattelpalmen kommen nat{\"u}rlicherweise an besonders trockenen und heißen Standorten vor, an denen es aufgrund der harschen Bedingungen nur sehr wenigen Pflanzen m{\"o}glich ist {\"u}berhaupt zu wachsen. Ein naheliegender Grund f{\"u}r die herausragende Toleranz dieser Art gegen{\"u}ber wasserlimitierenden Bedingungen ist eine Anpassung der stomat{\"a}ren Regulation zu Gunsten des Wasserhaushalts. In dieser Arbeit konnte ich durch vergleichende Untersuchungen der lichtabh{\"a}ngigen Transpiration sowie dem ABA-induzierten Stomaschluss grundlegende Unterschiede in der Stomaphysiologie der Dattelpalmen und der eher sensitiven Modellpflanze Arabidopsis thaliana nachweisen. Blattgaswechselmessungen zeigten, dass Dattelpalmen in der Lage sind die Spalt{\"o}ffnungen bei niedrigen Lichtintensit{\"a}ten, bei denen Arabidopsis bereits deutlich ge{\"o}ffnete Stomata aufwies, geschlossen zu halten. Der bedeutendste Unterschied in der Stomaphysiologie von Dattelpalmen und Arabidopsis lag aber im ABA-induzierten Stomaschluss. W{\"a}hrend {\"u}ber die Petiole verabreichtes ABA bei Arabidopsis innerhalb von 15 Minuten zu einem vollst{\"a}ndigen Stomaschluss f{\"u}hrte, konnte ich in dieser Arbeit zeigen, dass der ABA-induzierte Stomaschluss der Datteln nitratabh{\"a}ngig ist. ABA allein f{\"u}hrte nur zu einem sehr langsamen Stomaschluss der innerhalb einer Stunde nicht vollst{\"a}ndig abgeschlossen war. Nur in Gegenwart von Nitrat f{\"u}hrte die ABA-Gabe in den Transpirationsstrom der Fiederbl{\"a}tter der Datteln zu einem schnellen und vollst{\"a}ndigen Stomaschluss. In Arabidopsis wird der in Schließzellen vorkommende Anionenkanal AtSLAC1 durch eine {\"u}ber den ABA-Signalweg vermittelte Phosphorylierung aktiviert, was schlussendlich zur Aktivierung spannungsabh{\"a}ngiger Kationenkan{\"a}le und zum Ausstrom von Kalium aus den Schließzellen f{\"u}hrt. Es konnte gezeigt werden, dass die Nitratabh{\"a}ngigkeit der ABA-Antwort der Schließzellen von Dattelpalmen auf Eigenschaften von PdSLAC1 zur{\"u}ckzuf{\"u}hren ist und dieser Kanal nur in Anwesenheit von extrazellul{\"a}rem Nitrat aktivierbar ist. Mittlerweile konnte, unter anderem basierend auf diesen Ergebnissen, eine Tandem-Aminos{\"a}uresequenz identifiziert werden, die die SLAC-Homologe monokotyler Pflanzen wie der Dattelpalme von der dikotyler Pflanzen unterscheidet und zumindest teilweise f{\"u}r die nitratabh{\"a}ngige Aktivierung des Stomaschlusses vieler monokotyler verantwortlich ist. III. Die Salztoleranz von Phoenix dactylifera und Chenopodium quinoa Sowohl Dattelpalmen als auch C. quinoa weisen, verglichen mit den meisten anderen Pflanzen, eine hohe Toleranz gegen{\"u}ber NaCl-haltigen B{\"o}den auf. In dieser Arbeit habe ich die Salztoleranz beider Arten untersucht, um so Strategien zu identifizieren, die diesen Pflanzen diese gesteigerte Toleranz erm{\"o}glichen. Dattelpalmen k{\"o}nnen nat{\"u}rlicherweise auf salzigen B{\"o}den wachsen. Makroskopisch weisen diese Pflanzen aber keine Anpassungen wie bspw. Salzdr{\"u}sen auf und bislang ist unklar wie Dattelpalmen mit dem NaCl aus dem Boden umgehen. In dieser Arbeit konnte ich zeigen, dass der Natriumgehalt der Fiederbl{\"a}tter der Datteln durch eine sechsw{\"o}chige Bew{\"a}sserung mit 600mM NaCl, was ungef{\"a}hr der Konzentration von Meerwasser entspricht, nicht zunimmt. Demnach sind Datteln so genannte „Exkluder", also Pflanzen, die eine {\"u}berm{\"a}ßige Natriumaufnahme in photosynthetisch aktives Gewebe vermeiden. Der Natriumgehalt der Wurzeln dagegen nahm unter Salzstress aber zu. Diese Zunahme war allerdings in unterschiedlichen Bereichen der Wurzeln verschieden stark. Flammenphotometrische Messungen ergaben einen vom Wurzelansatz ausgehenden graduellen Anstieg des Natriumgehalts, der an der Wurzelspitze am h{\"o}chsten war. Dar{\"u}ber hinaus konnte eine Induktion von PdSOS1, einem putativen Na+/H+-Antiporter in diesen unteren, natriumhaltigen Bereichen nachgewiesen werden. Eine hohe SOS1-Aktivit{\"a}t gilt bereits in anderen toleranten Arten als Schl{\"u}sselmerkmal f{\"u}r deren Toleranz und die gesteigerte Expression von PdSOS1 deutet auf eine erh{\"o}hte Natrium-Exportrate aus der Wurzel zur{\"u}ck in den Boden in diesen unteren Bereichen hin, was schlussendlich den Ausschluss von Natrium vermitteln k{\"o}nnte. In sensitiven Arten f{\"u}hrt Salzstress h{\"a}ufig zu einer Abnahme der Kaliumkonzentration des Gewebes. Interessanterweise war dies weder f{\"u}r das Blatt- noch das Wurzelgewebe der Dattelpalmen der Fall. Der Kaliumgehalt beider Gewebe blieb trotz der Bew{\"a}sserung der Pflanzen mit Salzwasser konstant. Auf expressioneller Ebene konnte ich dar{\"u}ber hinaus zeigen, dass PdHAK5, ein putativer hochaffiner Kaliumtransporter, der unter Kontrollbedingungen {\"u}berwiegend in den oberen Wurzelabschnitten exprimiert wurde, durch den Salzstress dort reprimiert wurde. PdKT, ebenfalls ein putatives Kalium-Transportprotein dagegen, wurde nicht durch die Salzbehandlung beeinflusst, was zusammengenommen darauf hindeutet, dass das Aufrechterhalten des Kaliumgehalts bei Salzstress durch die differentielle Regulation verschiedener Kaliumaufnahmesysteme gew{\"a}hrleistet wird. Der effiziente Ausschluss von Natrium zusammen mit dem hohen K+/Na+-Verh{\"a}ltnis k{\"o}nnten demnach Schl{\"u}sselmerkmale f{\"u}r die hohe Salztoleranz von Phoenix dactylifera darstellen. Quinoa ist, {\"a}hnlich wie die Dattelpalme, eine salztolerante Nutzpflanze. Im Gegensatz zu Dattelpalmen weist Quinoa allerdings besondere Strukturen auf der Epidermis auf, die so genannten epidermalen Blasenhaare (englisch: epidermal bladder cells, EBCs). Die Funktion dieser ballonartig vergr{\"o}ßerten Zellen als externe Salzspeicher wird seit l{\"a}ngerem diskutiert. Flammenphotometrische Messungen des Natriumgehalts von Quinoa unter Salzstressbedingungen ergaben, dass Quinoa anders als Dattelpalmen, Natrium in die oberirdischen, photosynthetisch aktiven Organe aufnimmt. Auch die Zunahme des Natriumgehalts der EBCs konnte ich nachweisen. Junge Bl{\"a}tter haben eine hohe Dichte an intakten EBCs, was deren Funktion als externe Salzspeicher besonders zum Schutz dieser jungen Bl{\"a}tter nahelegt. mRNA-Sequenzierungen ergaben dar{\"u}ber hinaus, dass die EBCs bereits unter Kontrollbedingungen viele in grundlegende Stoffwechselprozesse involvierte Gene sowie membranst{\"a}ndige Transportproteine differentiell exprimieren. Diese Unterschiede im Transkriptom der EBCs zum Blattgewebe zeigen, dass katabole Stoffwechselwege nur eine untergeordnete Rolle in den hochspezialisierten EBCs spielen und deren Stoffwechsel auf dem Import energiereicher Zucker und Aminos{\"a}uren basiert. Mittels qPCR-Messungen und RNA-Sequenzierungen konnte ich die gewebespezifische Expression verschiedener Transportproteine nachweisen, die eine gerichtete Aufnahme von Natrium in EBCs erm{\"o}glichen k{\"o}nnten. Besonders die differentielle Expression eines Natriumkanals der HKT1-Familie deutet auf dessen Beteiligung an der Natriumbeladung der EBCs hin. CqHKT1.2 wurde ausschließlich in EBCs exprimiert und die elektrophysiologische Charakterisierung dieses Transportproteins ergab eine spannungsabh{\"a}ngige Natriumleitf{\"a}higkeit. Dieser Natriumkanal kann demnach die Natriumaufnahme bei Membranspannungen nahe dem Ruhepotential in die EBCs vermitteln und die Deaktivierung des CqHKT1.2 bei depolarisierenden Membranspannungen kann dar{\"u}ber hinaus einen Efflux von Na+ aus den EBCs verhindern. Auch das Expressionsmuster eines putativen Na+/H+-Antiporters (CqSOS1) der nur sehr gering in EBCs aber deutlich h{\"o}her in Blattgewebe exprimiert wurde, deutet auf eine indirekte Beteiligung dieses SOS1 an der Beladung der EBCs hin. Bereits charakterisierte SOS1-Proteine anderer Pflanzen zeigten unter physiologischen Bedingungen eine Natriumexport-Aktivit{\"a}t. CqSOS1 k{\"o}nnte demnach den Export von Natrium aus Mesophyll- und Epidermiszellen der Bl{\"a}tter in den Apoplasten vermitteln, welches dann {\"u}ber CqHKT1.2 in die EBCs aufgenommen wird. Trotz der Natriumaufnahme in die oberirdischen Teile und die EBCs f{\"u}hrte die Salzbehandlung {\"a}hnlich wie bei den Datteln nicht zu einer Abnahme des bemerkenswert hohen Kaliumgehalts. Mittels qPCR-Untersuchungen konnte ich die Expression verschiedener HAK-Orthologe nachweisen, deren Aktivit{\"a}t die Aufrechterhaltung des Kaliumgehalts unter Salzstress vermitteln k{\"o}nnten. Fr{\"u}here Studien konnten zeigen, dass Salzstress bei Quinoa wie bei vielen salztoleranten Arten zu einem Anstieg der Konzentration von kompatiblen gel{\"o}sten Substanzen und besonders von Prolin f{\"u}hrt. In dieser Arbeit konnte ich die hohe Expression eines Prolintransporters in EBCs nachweisen, was eher auf einen importbasierten Anstieg der Prolinkonzentration als auf die Synthese innerhalb der EBCs schließen l{\"a}sst. Zusammengefasst ergaben der Anstieg des Natriumgehalts der EBCs in Verbindung mit den Ergebnissen der RNA-Sequenzierung und den erg{\"a}nzenden qPCR Messungen, dass die EBCs von Quinoa bereits unter Kontrollbedingen f{\"u}r die Aufnahme von {\"u}bersch{\"u}ssigen Ionen unter Salzstress spezialisierte Zellen sind, deren Spezialisierung auf dem Import von energiereichreichen Zucken und anderen Substanzen basiert.}, subject = {Botanik}, language = {de} } @phdthesis{ScheideNoeth2021, author = {Scheide-N{\"o}th, Jan-Philipp}, title = {Activation of the Interleukin-5 receptor and its inhibition by cyclic peptides}, doi = {10.25972/OPUS-18250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182504}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cytokine interleukin-5 (IL-5) is part of the TH2-mediated immune response. As a key regulator of eosinophilic granulocytes (eosinophils), IL-5 controls multiple aspects of eosinophil life. Eosinophils play a pathogenic role in the onset and progression of atopic diseases as well as hypereosinophilic syndrome (HES). Here, cytotoxic proteins and pro-inflammatory mediators stored in intracellular vesicles termed granula are released upon activation thereby causing local inflammation to fight the pathogen. However, if such inflammation persists, tissue damage and organ failure can occur. Due to the close relationship between eosinophils and IL-5 this cytokine has become a major pharmaceutical target for the treatment of atopic diseases or HES. As observed with other cytokines, IL-5 signals by assembling a heterodimeric receptor complex at the cell surface in a stepwise mechanism. In the first step IL-5 binds to its receptor IL-5Rα (CD125). This membrane-located complex then recruits the so-called common beta chain βc (CD131) into a ternary ligand receptor complex, which leads to activation of intracellular signaling cascades. Based on this mechanism various strategies targeting either IL-5 or IL-5Rα have been developed allowing to specifically abrogate IL-5 signaling. In addition to the classical approach of employing neutralizing antibodies against IL 5/IL-5Rα or antagonistic IL-5 variants, two groups comprising small 18 to 30mer peptides have been discovered, that bind to and block IL-5Rα from binding its activating ligand IL-5. Structure-function studies have provided detailed insights into the architecture and interaction of IL-5IL-5Rα and βc. However, structural information for the ternary IL-5 complex as well as IL-5 inhibiting peptides is still lacking. In this thesis three areas were investigated. Firstly, to obtain insights into the second receptor activation step, i.e. formation of the ternary ligand-receptor complex IL-5•IL-5Rα•βc, a high-yield production for the extracellular domain of βc was established to facilitate structure determination of the ternary ligand receptor assembly by either X-ray crystallography or cryo-electron microscopy. In a second project structure analysis of the ectodomain of IL-5Rα in its unbound conformation was attempted. Data on IL-5Rα in its ligand-free state would provide important information as to whether the wrench-like shaped ectodomain of IL-5Rα adopts a fixed preformed conformation or whether it is flexible to adapt to its ligand binding partner upon interaction. While crystallization of free IL-5Rα failed, as the crystals obtained did not diffract X rays to high resolution, functional analysis strongly points towards a selection fit binding mechanism for IL-5Rα instead of a rigid and fixed IL-5Rα structure. Hence IL-5 possibly binds to a partially open architecture, which then closes to the known wrench-like architecture. The latter is then stabilized by interactions within the D1-D2 interface resulting in the tight binding of IL-5. In a third project X-ray structure analysis of a complex of the IL-5 inhibitory peptide AF17121 bound to the ectodomain of IL-5Rα was performed. This novel structure shows how the small cyclic 18mer peptide tightly binds into the wrench-like cleft formed by domains D1 and D2 of IL-5Rα. Due to the partial overlap of its binding site at IL-5Rα with the epitope for IL-5 binding, the peptide blocks IL-5 from access to key residues for binding explaining how the small peptide can effectively compete with the rather large ligand IL-5. While AF17121 and IL-5 seemingly bind to the same site at IL-5Rα, functional studies however showed that recognition and binding of both ligands differ. With the structure for the peptide-receptor complex at hand, peptide design and engineering could be performed to generate AF17121 analogies with enhanced receptor affinity. Several promising positions in the peptide AF17121 could be identified, which could improve inhibition capacity and might serve as a starting point for AF17121-based peptidomimetics that can yield either superior peptide based IL-5 antagonists or small-molecule-based pharmacophores for future therapies of atopic diseases or the hypereosinophilic syndrome.}, subject = {Interleukin 5}, language = {en} } @phdthesis{Kucka2021, author = {Kucka, Kirstin Michaela}, title = {Charakterisierung eines neuen Tumor Nekrose Faktor (TNF) Rezeptor 2 (TNFR2) Agonisten: Der heteromere, membranst{\"a}ndige Ligand Lymphotoxin α\(_2\)β}, doi = {10.25972/OPUS-24982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Seit mehr als zwei Jahrzehnten ist bekannt, dass nicht nur der Tumor Nekrose Faktor-α (=TNF-α) sondern auch Lymphotoxin-α (=LTα) in Form von Trimeren an TNFR1 und TNFR2 binden kann. Durch diese F{\"a}higkeit an beide Rezeptoren zu binden, haben diese zwei Liganden eine essentielle Rolle in der Entwicklung und dem Verlauf von Autoimmunerkrankungen. Bereits mit Beginn der 1990er Jahren wurde gezeigt, dass LTα nicht nur in Form von Homotrimeren vorliegt, sondern auch mit dem verwandten TNF-Superfamilie Liganden Lymphotoxin β (=LTβ) Heterotrimere bilden kann. Hierbei lagern sich LTα und LTβ in Form von LTα2β und LTαβ2 zusammen. Die initialen Experimente mit diesen Heterotrimeren zeigten bereits Unterschiede von LTα2β und LTαβ2. W{\"a}hrend LTα2β wie LTα an den TNFR1 bindet, kann LTαβ2 weder an TNFR1 noch TNFR2 binden und interagiert mit einem eigenen Rezeptor namens Lymphotoxin β Rezeptor (=LTβR). Da bereits zwei Liganden (TNF und LTα) f{\"u}r TNFR1 und TNFR2 bekannt waren, wurde LTα2β bis heute nicht weiter charakterisiert. LTαβ2 hingegen war lange Zeit der einzige bekannte Ligand f{\"u}r den LTβR, weshalb die LTαβ2-LTβR-Interaktion ausf{\"u}hrlich untersucht wurde. Diese Arbeit fokusiert sich auf die Charakterisierung von LTα2β. Hierf{\"u}r wurde die einzige bekannte Eigenschaft aus den 90er Jahren von LTα2β n{\"a}mlich die Bindung an TNFR1 aufgegriffen und um die Rezeptoren TNFR2 und LTβR erweitert. Diese Arbeit zeigt, dass LTα2β nicht nur an den TNFR1, sondern auch an TNFR2 und schwach an LTβR bindet. Trotz der asymmetrischen Bindestellen kann membrangebundenes LTα2β TNFR1 und TNFR2 nicht nur binden, sondern ist auch in der Lage diese zu aktivieren. Diese Arbeit gibt erste Einblicke in die Komplexizit{\"a}t dieses Heterotrimers indem gezeigt wird, dass LTα2β sowohl in seiner l{\"o}slichen als auch in seiner membrangebundenen Form den TNFR1 aktivieren kann, w{\"a}hrend der TNFR2 nur durch das membranst{\"a}ndige LTα2β aktiviert wird. Aufgrund der aktivierenden Eigenschaften von membranst{\"a}ndigem LTα2β und LTαβ2 auf die murine (=mu) Panc02-Zelllinie wird ein ersten Ausblick auf m{\"o}gliche weitergehende Experimente in mausbasierten Modellen gegeben. Die erzielten Ergebnisse zeigen, dass mit membranst{\"a}ndigem LTα2β ein neuer TNFR2 Agonist gefunden wurde.}, subject = {Ligand}, language = {de} } @article{KarimiFreundWageretal.2021, author = {Karimi, Sohail M. and Freund, Matthias and Wager, Brittney M. and Knoblauch, Michael and Fromm, J{\"o}rg and M. Mueller, Heike and Ache, Peter and Krischke, Markus and Mueller, Martin J. and M{\"u}ller, Tobias and Dittrich, Marcus and Geilfus, Christoph-Martin and Alfaran, Ahmed H. and Hedrich, Rainer and Deeken, Rosalia}, title = {Under salt stress guard cells rewire ion transport and abscisic acid signaling}, series = {New Phytologist}, volume = {231}, journal = {New Phytologist}, number = {3}, doi = {10.1111/nph.17376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259635}, pages = {1040-1055}, year = {2021}, abstract = {Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.}, language = {en} } @phdthesis{Kumari2021, author = {Kumari, Khushbu}, title = {The role of lipid transfer proteins (LTPs) during the fertilization process in Arabidopsis thaliana}, doi = {10.25972/OPUS-19961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199613}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Double fertilization is a defining characteristic of flowering plants (angiosperms). As the sperm cells of higher plants are non-motile, they need to be transported to the female gametophyte via the growing pollen tube. The pollen-tube journey through the female tissues represents a highly complex process. To provide for successful reproduction it demands intricate communication between the cells of the two haploid gametophytes - the polar growing pollen tube (carrying the two non-motile sperm cells) and the ovule (hosting the egg cell/synergid cells). The polar growth of the pollen tube towards the female gamete is guided by different signaling molecules, including sugars, amino acids and peptides. Some of these belong to the family of lipid transfer proteins (LTPs), which are secreted cysteine-rich peptides. Depending on the plant species several lines of evidence have also suggested potential roles for LTPs during pollen germination or pollen-tube guidance. Although Arabidopsis thaliana has 49 annotated genes for LTPs, several of which are involved in plant immunity and cell-to-cell communication, the role of most members of this family during fertilization is unknown. The aim of this project was therefore to systematically identify LTPs which play a role in the fertilization process in A. thaliana, particularly during pollen tube guidance. To identify candidate proteins, the expression profile of LTPs in reproductive tissue was investigated. This was accomplished by in-silico bioinformatic analysis using different expression databases. Following confirmion of these results by qRT-PCR analysis, seven Type-I nsLTPs (LTP1, LTP2, LTP3, LTP4, LTP5, LTP6 and LTP12) were found to be exclusively expressed in pistils. Except for LTP12, all other pistil expressed LTPs were transcriptionally induced upon pollination. Using reporter-based transcriptional and translational fusions the temporal and spatial expression patterns together with protein localizations for LTP2, 3, 4, 5, 6, and 12 were determined in planta. Stable transgenic plants carrying PromLTP::GUS constructs of the six different LTP candidates showed that most of LTPs were expressed in the stigma/stylar region and were induced upon pollination. With respect to protein localization on the cellular level, they split into two categories: LTP2, LTP5 and LTP6 were localized in the cell wall, while LTP3, LTP4 and LTP12 were specifically targeted to the plasma membrane. For the functional characterization of the candidate LTPs, several T-DNA insertion mutant plant lines were investigated for phenotypes affecting the fertilization process. Pollen development and quality as well as their in-vitro germination rate did not differ between the different single ltp mutant lines and wildtype plants. Moreover, in-vivo cross pollination experiments revealed that tube growth and fertilization rate of the mutant plants were similar to wildtype plants. Altogether, no discernible phenotype was evident in other floral and vegetative parts between different single ltp mutant lines and wildtype plants. As there was no distinguishable phenotype observed for single ltp-ko plants, double knock out plants of the two highly homologous genes LTP2 (expressed in the female stigma, style and transmitting tract) and LTP5 (expressed in the stigma, style, pollen pollen-tube and transmitting tract) were generated using the EPCCRISPR-Cas9 genome editing technique. Two ltp2ltp5 mutant transgenic-lines (\#P31-P2 and \#P31-P3) with frameshift mutations in both the genes could be established. Further experiments showed, that the CRISPR/Cas9-mediated knock-out of LTP2/LTP5 resulted in significantly reduced fertilization success. Cell biological analyses revealed that the ltp2ltp5 double mutant was impaired in pollen tube guidance towards the ovules and that this phenotype correlated with aberrant callose depositions in the micropylar region during ovule development. Detailed analysis of in-vivo pollen-tube growth and reciprocal cross pollination assay suggested that, the severely compromised fertility was not caused by any defect in development of the pollen grains, but was due to the abnormal callose deposition in the embryo sac primarily concentrated at the synergid cell near the micropylar end. Aberrant callose deposition in ltp2ltp5 ovules pose a complete blockage for the growing pollen tube to change its polarity to enter the funiculus indicating funicular and micropylar defects in pollen tube guidance causing fertilization failure. Our finding suggests that female gametophyte expressed LTP2 and LTP5 play a crucial role in mediating pollen tube guidance process and ultimately having an effect on the fertilization success. In line with the existence of a N-terminal signal peptide, secreted LTPs might represent a well-suited mobile signal carrier in the plant's extracellular matrix. Previous reports suggested that, LTPs could act as chemoattractant peptide, imparting competence to the growing pollen tube, but the molecular mechanism is still obscure. The results obtained in this thesis further provide strong evidence, that LTP2/5 together regulate callose homeostasis and testable models are discussed. Future work is now required to elucidate the detailed molecular link between these LTPs and their potential interacting partners or receptors expressed in pollen and synergid cells, which should provide deeper insight into their functional role as regulatory molecules in the pollen tube guidance mechanism.}, subject = {Fertilization in angiosperm}, language = {en} } @phdthesis{Seufert2021, author = {Seufert, Pascal}, title = {Chemical and physical structure of the barrier against water transpiration of leaves: Contribution of different wax compounds}, doi = {10.25972/OPUS-20896}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cuticle is constituted of the biopolymer cutin and intra- and epicuticular waxes. In some cases, it has epicuticular wax crystals, protruding from the epicuticular wax film. One of the most important tasks is protection against desiccation. Many investigations were conducted to find the transport limiting component of the cuticle. It is evidentially confirmed that the waxes form this barrier. These waxes are multifactorial blends made of very-long-chain aliphatic (VLCA) compounds and triterpenoids (TRP). The VLCAs were proposed to constitute the transpiration barrier to water. However, experimental confirmation was lacking so far. The present study focuses on the development of a method to selectively extract TRPs from the cuticle and the impact of the removal on the transpiration barrier. The plants deployed in this study exhibited several features. They had no epicuticular crystals on their surfaces, were astomatous, had a rather durable and possibly isolatable cuticle. A broad range of wax compositions was covered from plants with no TRP content and low wax load like Hedera helix and Zamioculcas zamiifolia to plants with high TRP content and high wax load like Nerium oleander. The selective extraction was conducted using a sequence of solvents. TRPs were extracted almost exhaustively from CMs with the first MeOH extract. Only a minor amount of shorter chained VLCAs was obtained. The remaining waxes, consisting mostly of VLCAs and some remnant TRPs, were removed with the following TCM extract. After the extractions, the water permeance of native cuticular membranes (CM), MeOH extracted (M) and dewaxed cuticular discs (MX) was investigated gravimetrically. Compared to the water permeance of CMs, Ms showed no or only a small increase in water conductance. MXs, however, always showed strongly increased values. The knowledge about the wax compounds constituting the transport-limiting properties is vital for different projects. For various issues, it would be favourable to have a standardized wax mixture as an initial point of research. It could be used to develop screening procedures to investigate the impact of adjuvants on cuticular waxes or the influence of wax constituents on the properties of cuticular waxes. This work concentrated on the development of an artificial wax mixture, which mimics the physical properties of a plant leaf wax sufficiently. As target wax, the leaf wax of Schefflera elegantissima was chosen. The wax of this plant species consisted almost exclusively of VLCAs, had a rather simple composition regarding compound classes and chain length distribution and CMs could be isolated. Artificial binary, ternary and quaternary waxes corresponding to the conditions within the plant wax were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD) techniques and Fourier-transform infrared (FTIR) spectroscopy. Phase diagrams were mapped out for a series of binary, ternary and quaternary wax mixtures. FTIR experiments were conducted using, ternary and a quaternary artificial wax blends. The blends were chosen to represent the conditions within the wax of the adaxial CM plant wax. The FTIR experiments exhibited an increasing resemblance of the artificial wax to the plant wax (adaxial CM wax) with an increasing number of compounds in the artificial wax. The same trend was found for DSC thermograms. Thermograms of ternary and quaternary blends exhibited more overlapping peaks and occurred in a temperature range more similar to the range of the whole leaf plant wax. The XRD spectrum at room temperature showed good conformity with the quaternary blend. The current work illustrates a method for selective extraction of TRPs from isolated CMs. It gives direct experimental proof of the association of the water permeance barrier with the VLCA rather than to the TRPs. Furthermore, the possibility to mimic cuticular waxes using commercially available wax compounds is investigated. The results show promising feasibility for its viability, enabling it to perform as a standardized initial point for further research (e.g. to examine the influence of different constituents on waxes), revealing valuable knowledge about the structure and the chemistry-function relationship of cuticular waxes.}, subject = {Kutikula}, language = {en} } @article{SchilcherHilsmannRauscheretal.2021, author = {Schilcher, Felix and Hilsmann, Lioba and Rauscher, Lisa and Değirmenci, Laura and Krischke, Markus and Krischke, Beate and Ankenbrand, Markus and Rutschmann, Benjamin and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {In vitro rearing changes social task performance and physiology in honeybees}, series = {Insects}, volume = {13}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects13010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252305}, year = {2021}, abstract = {In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.}, language = {en} } @article{NuhkatBroscheStoezleFeixetal.2021, author = {Nuhkat, Maris and Brosch{\´e}, Mikael and Stoezle-Feix, Sonja and Dietrich, Petra and Hedrich, Rainer and Roelfsema, M. Rob G. and Kollist, Hannes}, title = {Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells' ozone response}, series = {New Phytologist}, volume = {232}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.17711}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259646}, pages = {1692-1702}, year = {2021}, abstract = {Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O\(_{3}\) triggered a drop in whole-plant CO\(_{2}\) uptake. Within this early phase, O\(_{3}\) pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O\(_{3}\) induced cell death, systemic Ca\(^{2+}\) signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca\(^{2+}\)) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.}, language = {en} }