@article{MaerzKurlbaumRocheLancasteretal.2021, author = {M{\"a}rz, Juliane and Kurlbaum, Max and Roche-Lancaster, Oisin and Deutschbein, Timo and Peitzsch, Mirko and Prehn, Cornelia and Weismann, Dirk and Robledo, Mercedes and Adamski, Jerzy and Fassnacht, Martin and Kunz, Meik and Kroiss, Matthias}, title = {Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.722656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245710}, year = {2021}, abstract = {Context Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines. By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5\%, accuracy 67.3\%) was obtained by using Gradient Boosting Machine Modelling. Conclusions The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.}, language = {en} } @article{FauserWeselekHauptmannetal.2020, author = {Fauser, Mareike and Weselek, Grit and Hauptmann, Christine and Markert, Franz and Gerlach, Manfred and Hermann, Andreas and Storch, Alexander}, title = {Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse Brain}, series = {Frontiers in Neuroanatomy}, volume = {14}, journal = {Frontiers in Neuroanatomy}, doi = {10.3389/fnana.2020.558435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212485}, year = {2020}, abstract = {The major catecholamines—dopamine (DA) and norepinephrine (NE)—are not only involved in synaptic communication but also act as important trophic factors and might ultimately be involved in mammalian brain development. The catecholaminergic innervation of neurogenic regions of the developing brain and its putative relationship to neurogenesis is thus of pivotal interest. We here determined DA and NE innervation around the ventricular/subventricular zone (VZ/SVZ) bordering the whole ventricular system of the developing mouse brain from embryonic day 14.5 (E14.5), E16.5, and E19.5 until postnatal day zero (P0) by histological evaluation and HPLC with electrochemical detection. We correlated these data with the proliferation capacity of the respective regions by quantification of MCM\(^{2+}\) cells. During development, VZ/SVZ catecholamine levels dramatically increased between E16.5 and P0 with DA levels increasing in forebrain VZ/SVZ bordering the lateral ventricles and NE levels raising in midbrain/hindbrain VZ/SVZ bordering the third ventricle, the aqueduct, and the fourth ventricle. Conversely, proliferating MCM\(^{2+}\) cell counts dropped between E16.5 and E19.5 with a special focus on all VZ/SVZs outside the lateral ventricles. We detected an inverse strong negative correlation of the proliferation capacity in the periventricular neurogenic regions (log-transformed MCM\(^{2+}\) cell counts) with their NE levels (r = -0.932; p < 0.001), but not their DA levels (r = 0.440; p = 0.051) suggesting putative inhibitory effects of NE on cell proliferation within the periventricular regions during mouse brain development. Our data provide the first framework for further demandable studies on the functional importance of catecholamines, particularly NE, in regulating neural stem/progenitor cell proliferation and differentiation during mammalian brain development.}, language = {en} } @article{BeyhoffLohrThieleetal.2020, author = {Beyhoff, Niklas and Lohr, David and Thiele, Arne and Foryst-Ludwig, Anna and Klopfleisch, Robert and Schreiber, Laura M. and Kintscher, Ulrich}, title = {Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study}, series = {Frontiers in Cardiovascular Medicine}, volume = {7}, journal = {Frontiers in Cardiovascular Medicine}, doi = {10.3389/fcvm.2020.580296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217959}, year = {2020}, abstract = {Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.}, language = {en} }