@article{RydzekNerreterPengetal.2019, author = {Rydzek, Julian and Nerreter, Thomas and Peng, Haiyong and Jutz, Sabrina and Leitner, Judith and Steinberger, Peter and Einsele, Hermann and Rader, Christoph and Hudecek, Michael}, title = {Chimeric Antigen Receptor Library Screening Using a Novel NF-kappa B/NFAT Reporter Cell Platform}, series = {Molecular Therapy}, volume = {27}, journal = {Molecular Therapy}, number = {2}, doi = {10.1016/j.ymthe.2018.11.015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227193}, pages = {287-299}, year = {2019}, abstract = {Chimeric antigen receptor (CAR)-T cell immunotherapy is under intense preclinical and clinical investigation, and it involves a rapidly increasing portfolio of novel target antigens and CAR designs. We established a platform that enables rapid and high-throughput CAR-screening campaigns with reporter cells derived from the T cell lymphoma line Jurkat. Reporter cells were equipped with nuclear factor kappa B (NF kappa B) and nuclear factor of activated T cells (NFAT) reporter genes that generate a duplex output of enhanced CFP (ECFP) and EGFP, respectively. As a proof of concept, we modified reporter cells with CD19-specific and ROR1-specific CARs, and we detected high-level reporter signals that allowed distinguishing functional from non-functional CAR constructs. The reporter data were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary CAR-T cells (21 days). We challenged the reporter platform to a large-scale screening campaign on a ROR1-CAR library, and we showed that reporter cells retrieved a functional CAR variant that was present with a frequency of only 6 in 1.05 x 10(6). The data illustrate the potential to implement this reporter platform into the preclinical development path of novel CAR-T cell products and to inform and accelerate the selection of lead CAR candidates for clinical translation.}, language = {en} } @article{PrommersbergerHudecekNerreter2020, author = {Prommersberger, Sabrina and Hudecek, Michael and Nerreter, Thomas}, title = {Antibody-Based CAR T Cells Produced by Lentiviral Transduction}, series = {Current Protocols in Immunology}, volume = {128}, journal = {Current Protocols in Immunology}, number = {1}, doi = {10.1002/cpim.93}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215497}, year = {2020}, abstract = {One promising approach to treat hematologic malignancies is the usage of patient-derived CAR T cells. There are continuous efforts to improve the function of these cells, to optimize their receptor, and to use them for the treatment of additional types of cancer and especially solid tumors. In this protocol, an easy and reliable approach for CAR T cell generation is described. T cells are first isolated from peripheral blood (here: leukoreduction system chambers) and afterwards activated for one day with anti-CD3/CD28 Dynabeads. The gene transfer is performed by lentiviral transduction and gene transfer rate can be verified by flowcytometric analysis. Six days after transduction, the stimulatory Dynabeads are removed. T cells are cultured in interleukin-2 conditioned medium for several days for expansion. There is an option to expand CAR T cells further by co-incubation with irradiated, antigen-expressing feeder cell lines. The CAR T cells are ready to use after 10 (without feeder cell expansion) to 24 days (with feeder cell expansion).}, language = {en} }