@article{TvingstedtMalinkiewiczBaumannetal.2014, author = {Tvingstedt, Kristofer and Malinkiewicz, Olga and Baumann, Andreas and Deibel, Carsten and Snaith, Henry J. and Dyakonov, Vladimir and Bolink, Henk J.}, title = {Radiative efficiency of lead iodide based perovskite solar cells}, series = {Scientific Reports}, volume = {4}, journal = {Scientific Reports}, doi = {10.1038/srep06071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119360}, pages = {6071}, year = {2014}, abstract = {The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.}, language = {en} } @article{SoaviScotognellaViolaetal.2015, author = {Soavi, Giancarlo and Scotognella, Francesco and Viola, Daniele and Hefner, Timo and Hertel, Tobias and Cerullo, Giulio and Lanzani, Guglielmo}, title = {High energetic excitons in carbon nanotubes directly probe charge-carriers}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {9681}, doi = {10.1038/srep09681}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143061}, year = {2015}, abstract = {Theory predicts peculiar features for excited-state dynamics in one dimension (1D) that are difficult to be observed experimentally. Single-walled carbon nanotubes (SWNTs) are an excellent approximation to 1D quantum confinement, due to their very high aspect ratio and low density of defects. Here we use ultrafast optical spectroscopy to probe photogenerated charge-carriers in (6,5) semiconducting SWNTs. We identify the transient energy shift of the highly polarizable S\(_{33}\) transition as a sensitive fingerprint of charge-carriers in SWNTs. By measuring the coherent phonon amplitude profile we obtain a precise estimate of the Stark-shift and discuss the binding energy of the S\(_{33}\) excitonic transition. From this, we infer that charge-carriers are formed instantaneously (<50 fs) even upon pumping the first exciton, S\(_{11}\). The decay of the photogenerated charge-carrier population is well described by a model for geminate recombination in 1D.}, language = {en} } @article{RyczkoMisiewiczHoflingetal.2017, author = {Ryczko, K. and Misiewicz, J. and Hofling, S. and Kamp, M. and Sęk, G.}, title = {Optimizing the active region of interband cascade lasers for passive mode-locking}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4973937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181790}, year = {2017}, abstract = {The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into "W-shaped" type II QWs offers significant difference in optical transitions' oscillator strengths (characteristic lifetimes) of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270274}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} }