@article{SchulteSoldaSpaenigetal.2022, author = {Schulte, Clemens and Sold{\`a}, Alice and Sp{\"a}nig, Sebastian and Adams, Nathan and Bekić, Ivana and Streicher, Werner and Heider, Dominik and Strasser, Ralf and Maric, Hans Michael}, title = {Multivalent binding kinetics resolved by fluorescence proximity sensing}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, doi = {10.1038/s42003-022-03997-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301157}, year = {2022}, abstract = {Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures. High throughput synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric architectures combined with direct FPS measurements resolved on-rates, off-rates, and dissociation constants with high accuracy and low sample consumption compared to three complementary technologies. The dataset and its machine learning-based analysis deciphered the relationship of specific architectural features and binding kinetics and thereby identified binders with unprecedented protein inhibition capacity; thus, highlighting the value of FPS for the rational engineering of multivalent inhibitors.}, language = {en} } @article{HoyerSchatzschneiderSchulzSiegmundetal.2012, author = {Hoyer, Jan and Schatzschneider, Ulrich and Schulz-Siegmund, Michaela and Neundorf, Ines}, title = {Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery}, series = {Beilstein Journal of Organic Chemistry}, volume = {8}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.8.204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133933}, pages = {1788-1797}, year = {2012}, abstract = {Over the past 20 years, cell-penetrating peptides (CPPs) have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene) complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC18)\(_2\), which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC18)\(_2\) leads to significant reduction of its IC\(_{50}\) value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.}, language = {en} }