@article{SchneiderSchauliesvonBrunnSchachner1990, author = {Schneider-Schaulies, J{\"u}rgen and von Brunn, A. and Schachner, M.}, title = {Recombinant peripheral myelin protein P\(_o\) confers both adhesion and neurite outgrowth promoting properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54841}, year = {1990}, abstract = {To probe into the functional properties of the major peripheral myelin cell surface glycoprotein P 0 , its ability to confer adhesion and neurite outgrowth-promoting properfies was studied in cell culture. Tothis aim, Po was expressed as integral membrane glycoprotein at the surface of CV -1 cells with the help of a recombinant vaccinia virus expression system. Furthermore, the immunoglobulin-like extracellular domain of P0 (P0 -ED) was expressed as soluble profein in a bacterial expression system and used as substrafe coated to plastic dishes or as competitor in cell adhesion and neurite outgrowth-promoting assays. The adhesion of P0 -expressing CV-1 cells to P0 -ED substrafe was specifically inhibitable by polyclonal Po antibodies (54\% :t 6\% ). In addition, the specific interaction between Po molecules could be reduced ( 49\% ± 8\%) by adding soluble P0 -ED to the culture medium, demonstrating that the homophilic inter~ction between recombinant Po molecules can be mediated, at least on one partner of interacting molecules, by the unglycosylated Ig-like domain. Substrate-coated p -ED also conferred adhesion and neurite outgrowth ability to dorsal root ganglion neurons with neurites of a mean length of about 150 ,_..m. This neurite outgrowth was specifically inhibitable by soluble P" (74\% ± 14\%) and P 0 antibodies (65\% ± 9\% ). These observations indicate that Po is capable of displaying two different types of functional roles in the myelination process of . peripheral nerves: The heterophilic interaction with neurons may be responsible for the recognition between axon and myelinating Schwann cell at the onset of myelination, whereas the homophilic interacton may indicate its roJe in the selfrecognition of the apposing loops of Schwann cell surface membranes during the myelination process and in the mature compact myelin sheath.}, subject = {Immunologie}, language = {en} } @article{ArchelosRoggenbuckSchneiderSchauliesetal.1993, author = {Archelos, JJ and Roggenbuck, K. and Schneider-Schaulies, J{\"u}rgen and Linington, C. and Toyka, KV and Hartung, H.-P.}, title = {Production and characterization of monoclonal antibodies to the extracellular domain of PO}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54889}, year = {1993}, abstract = {Seven monoclonal antibodies were raised against the immunoglobulin-like extracellular domain of PO (POED), the major protein of peripheral nervous system myelin. Mice were immunized with purified recombinant rat PO-ED. After fusion, 7 clones (POI-P07) recognizing either recombinant, rat, mouse, or human PO-ED were selected by ELlS A and were characterized by Western blot, immunohistochemistry, and a competition assay. Antibodies belonged to the IgG or IgM class, and P04-P07, reacted with PO in fresh-frozen and paraffin-embedded sections of human or rat peripheral nerve, but not with myelin proteins of the central nervous system of either species. Epitope specificity of the antibodies was determined by a competition enzyme-linked immunosorbent assay (ELISA) and a direct ELlS A using short synthetic peptides spanning the entire extracellular domain of PO. These assays showed that POl and P02 exhibiting the same reaction pattern in Western blot and immunohistochemistry reacted with different distant epitopes of PO. Furthermore, the monoclonal antibodies P05 and P06 recognized 2 different epitopes in close proximity within the neuritogenic extracellular sequence of PO. This panel of monoclonal antibodies, each binding to a different epitope of the extracellular domain of PO, will be useful for in vitro and in vivo studies designed to explore the role of PO during myelination and in demyelinating diseases of the peripheral nervous system.}, subject = {Immunologie}, language = {en} }