@article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A. and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^+\)/H\(^+\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190908}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^+\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1; 5 were identified as the respective candidate genes. These transporters retrieve Na\(^+\) from the xylem, thus limiting the rates of Na\(^+\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^+\)/H\(^+\) exchanger in both root cortical and stelar tissues. Net Na\(^+\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^+\)/H\(^+\) exchanger) and was mirrored by net H\(^+\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^+\) content. One enhances the retrieval of Na\(^+\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^+\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^+\) delivery to the shoot.}, language = {en} } @article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150236}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^{+}\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na\(^{+}\) from the xylem, thus limiting the rates of Na\(^{+}\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger in both root cortical and stelar tissues. Net Na\(^{+}\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^{+}\)/H\(^{+}\) exchanger) and was mirrored by net H\(^{+}\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^{+}\) content. One enhances the retrieval of Na\(^{+}\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^{+}\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^{+}\) delivery to the shoot.}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{DorschKrieterLemkeetal.2012, author = {Dorsch, Oliver and Krieter, Detlef H. and Lemke, Horst-Dieter and Fischer, Stefan and Melzer, Nima and Sieder, Christian and Bramlage, Peter and Harenberg, Job}, title = {A multi-center, prospective, open-label, 8-week study of certoparin for anticoagulation during maintenance hemodialysis - the membrane study}, series = {BMC Nephrology}, volume = {13}, journal = {BMC Nephrology}, number = {50}, doi = {10.1186/1471-2369-13-50}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134845}, year = {2012}, abstract = {Background: Adequate anticoagulation is prerequisite for effective hemodialysis to prevent clotting in the extracorporeal circuit. We aimed providing first data on the efficacy and safety of the low-molecular-weight heparin certoparin in this setting. Methods: Multicenter, open-label, 8-week trial. Patients received a single dose of 3,000 IU certoparin i.v. with additional titration steps of 600 IU and/or continuous infusion if necessary. Results: 120 patients were screened, 109 enrolled (median age 71; range 26-90 years) and 106 available for efficacy analyses. The percentage of unsatisfactory dialysis results at 8 weeks due to clotting or bleeding, was 1.9\% (n = 2/106; 95\% confidence interval [CI] 0.23-6.65\%); no major bleeding. 1.9\% had moderate/severe clotting in the lines/bubble catcher and 2.8\% in the dialyser at week 8.15.7 +/- 14.3\% of the dialysis filters' visual surface area was showing redness. In subgroups of patients receiving median doses of 3000 +/- 0, 3000 (2400-6000) and 4200 (3000-6600) IU, plasma aXa levels at baseline, 4 and 8 weeks were 0.24 [ 95\% CI 0.21-0.27], 0.33 [0.27-0.40] and 0.38 [0.33-0.45] aXa IU/ml at 2 h. C-48h was 0.01 [0.01-0.02] aXa IU at all visits. At baseline and 4 weeks AUC(0-48h) was 2.66 [2.19-3.24] and 3.66 [3.00-4.45] aXa IU*h/ml. In 3.0\% of dialyses (n = 83/2724) prolonged fistula compression times were documented. Eight patients (7.34\%) had at least one episode of minor bleeding. 4) 85.3\% of patients had any adverse event, 9.2\% were serious without suspected drug relation; and in 32 patients a drug-relation was suspected. Conclusions: Certoparin appears effective and safe for anticoagulation in patients undergoing maintenance hemodialysis.}, language = {en} }