@article{MuellerSpriestersbachMinetal.2022, author = {M{\"u}ller, S. and Spriestersbach, F. and Min, C.-H. and Fornari, C. I. and Reinert, F.}, title = {Molecular beam epitaxy of TmTe thin films on SrF\(_{2}\) (111)}, series = {AIP Advances}, volume = {12}, journal = {AIP Advances}, number = {2}, doi = {10.1063/5.0083276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300876}, year = {2022}, abstract = {The odd parity nature of 4f states characterized by strong spin-orbit coupling and electronic correlations has led to a search for novel topological phases among rare earth compounds, such as Kondo systems, heavy Fermions, and homogeneous mixed-valent materials. Our target system is thulium telluride thin films whose bandgap is expected to be tuned as a function of lattice parameter. We systematically investigate the growth conditions of TmxTey thin films on SrF\(_{2}\) (111) substrates by molecular beam epitaxy. The ratio between Te and Tm supply was precisely tuned, resulting in two different crystalline phases, which were confirmed by x-ray diffraction and x-ray photoemission spectroscopy. By investigating the crystalline quality as a function of the substrate temperature, the optimal growth conditions were identified for the desired Tm1Te1 phase. Additional low energy electron diffraction and reflective high energy electron diffraction measurements confirm the epitaxial growth of TmTe layers. X-ray reflectivity measurements demonstrate that homogeneous samples with sharp interfaces can be obtained for varied thicknesses. Our results provide a reliable guidance to prepare homogeneous high-quality TmTe thin films and thus serve as a basis for further electronic investigations.}, language = {en} } @article{GabelPickemScheidereretal.2022, author = {Gabel, Judith and Pickem, Matthias and Scheiderer, Philipp and Dudy, Lenart and Leikert, Berengar and Fuchs, Marius and St{\"u}binger, Martin and Schmitt, Matthias and K{\"u}spert, Julia and Sangiovanni, Giorgio and Tomczak, Jan M. and Held, Karsten and Lee, Tien-Lin and Claessen, Ralph and Sing, Michael}, title = {Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen}, series = {Advanced Electronic Materials}, volume = {8}, journal = {Advanced Electronic Materials}, number = {4}, issn = {2199-160X}, doi = {10.1002/aelm.202101006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318914}, year = {2022}, abstract = {Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit.}, language = {en} }