@article{YankuBitmanLotanZoharetal.2018, author = {Yanku, Yifat and Bitman-Lotan, Eliya and Zohar, Yaniv and Kurant, Estee and Zilke, Norman and Eilers, Martin and Orian, Amir}, title = {Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development}, series = {Cells}, volume = {7}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells7100151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197630}, pages = {151}, year = {2018}, abstract = {The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development.}, language = {en} } @article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Reinders, J. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death and Disease}, volume = {3}, journal = {Cell Death and Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124149}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death \& Disease}, volume = {3}, journal = {Cell Death \& Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134673}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B-and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{RiesSanderDeoletal.2019, author = {Ries, Lena K. and Sander, Bodo and Deol, Kirandeep K. and Letzelter, Marie-Annick and Strieter, Eric Robert and Lorenz, Sonja}, title = {Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity}, series = {Journal of Biological Chemistry}, volume = {294}, journal = {Journal of Biological Chemistry}, number = {15}, doi = {10.1074/jbc.RA118.007014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226207}, pages = {6113-6129}, year = {2019}, abstract = {Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.}, language = {en} } @article{MakoahNigelArndtPradel2012, author = {Makoah Nigel, Animake and Arndt, Hans-Dieter and Pradel, Gabriele}, title = {The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention?}, series = {International Journal for Parasitology: Drugs and Drug Resistance}, volume = {2}, journal = {International Journal for Parasitology: Drugs and Drug Resistance}, doi = {10.1016/j.ijpddr.2011.12.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137777}, pages = {1-10}, year = {2012}, abstract = {The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs.}, language = {en} } @article{LachaudCastorHainetal.2014, author = {Lachaud, Christophe and Castor, Dennis and Hain, Karolina and Mu{\~n}oz, Ivan and Wilson, Jamie and MacArtney, Thomas J. and Schindler, Detlev and Rouse, John}, title = {Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia}, series = {Journal of Cell Science}, volume = {127}, journal = {Journal of Cell Science}, number = {13}, issn = {1477-9137}, doi = {10.1242/jcs.146167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120908}, pages = {2811-7}, year = {2014}, abstract = {Defects in SLX4, a scaffold for DNA repair nucleases, cause Fanconi anemia due to defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains, implicated in protein recruitment to sites of DNA damage. Here we show that human SLX4 is recruited to sites of ICL induction but the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require ubiquitination of FANCD2, or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1), but not the second UBZ domain of SLX4 binds to ubiquitin polymers with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites, and for efficient ICL repair in murine fibroblasts. SLX4 UBZ-2 domain does not bind ubiquitin in vitro or contribute to ICL repair, but it is required for resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and suggest that there remain to be identified ubiquitinated ligands and E3 ligases critical for ICL repair.}, language = {en} } @article{EngelRudeliusSlawskaetal.2016, author = {Engel, Katharina and Rudelius, Martina and Slawska, Jolanta and Jacobs, Laura and Abhari, Behnaz Ahangarian and Altmann, Bettina and Kurutz, Julia and Rathakrishnan, Abirami and Fern{\´a}ndez-S{\´a}iz, Vanesa and Brunner, Andr{\"a} and Targosz, Bianca-Sabrina and Loewecke, Felicia and Gloeckner, Christian Johannes and Ueffing, Marius and Fulda, Simone and Pfreundschuh, Michael and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Keller, Ulrich and Jost, Philipp J. and Rosenwald, Andreas and Peschel, Christian and Bassermann, Florian}, title = {USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma}, series = {EMBO Molecular Medicine}, volume = {8}, journal = {EMBO Molecular Medicine}, doi = {10.15252/emmm.201506047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165016}, pages = {851-862}, year = {2016}, abstract = {The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.}, language = {en} } @article{DeolLorenzStrieter2019, author = {Deol, Kirandeep K. and Lorenz, Sonja and Strieter, Eric R.}, title = {Enzymatic logic of ubiquitin chain assembly}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {835}, doi = {10.3389/fphys.2019.00835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201731}, year = {2019}, abstract = {Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.}, language = {en} } @article{ArdeltEbbingAdamsetal.2015, author = {Ardelt, Peter U. and Ebbing, Jan and Adams, Fabian and Reiss, Cora and Arap, Wadih and Pasqualini, Renata and Bachmann, Alexander and Wetterauer, Ulrich and Riedmiller, Hubertus and Kneitz, Burkard}, title = {An anti-ubiquitin antibody response in transitional cell carcinoma of the urinary bladder}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0118646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143711}, pages = {e0118646}, year = {2015}, abstract = {Background To use combinatorial epitope mapping ("fingerprinting") of the antibody response to identify targets of the humoral immune response in patients with transitional cell carcinoma (TCC) of the bladder. Methods A combinatorial random peptide library was screened on the circulating pool of immunoglobulins purified from an index patient with a high risk TCC (pTa high grade plus carcinoma in situ) to identify corresponding target antigens. A patient cohort was investigated for antibody titers against ubiquitin. Results We selected, isolated, and validated an immunogenic peptide motif from ubiquitin as a dominant epitope of the humoral response. Patients with TCC had significantly higher antibody titers against ubiquitin than healthy donors (p<0.007), prostate cancer patients (p<0.0007), and all patients without TCC taken together (p<0.0001). Titers from superficial tumors were not significantly different from muscle invasive tumors (p = 0.0929). For antibody response against ubiquitin, sensitivity for detection of TCC was 0.44, specificity 0.96, positive predictive value 0.96 and negative predictive value 0.41. No significant titer changes were observed during the standard BCG induction immunotherapy. Conclusions This is the first report to demonstrate an anti-ubiquitin antibody response in patients with TCC. Although sensitivity of antibody production was low, a high specificity and positive predictive value make ubiquitin an interesting candidate for further diagnostic and possibly immune modulating studies.}, language = {en} }