@article{RobertsonHsiehForsteretal.2016, author = {Robertson, Kevin A. and Hsieh, Wei Yuan and Forster, Thorsten and Blanc, Mathieu and Lu, Hongjin and Crick, Peter J. and Yutuc, Eylan and Watterson, Steven and Martin, Kimberly and Griffiths, Samantha J. and Enright, Anton J. and Yamamoto, Mami and Pradeepa, Madapura M. and Lennox, Kimberly A. and Behlke, Mark A. and Talbot, Simon and Haas, J{\"u}rgen and D{\"o}lken, Lars and Griffiths, William J. and Wang, Yuqin and Angulo, Ana and Ghazal, Peter}, title = {An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway}, series = {PLoS Biology}, volume = {14}, journal = {PLoS Biology}, number = {3}, doi = {10.1371/journal.pbio.1002364}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166666}, pages = {e1002364}, year = {2016}, abstract = {In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.}, language = {en} } @article{BeckerKucharskiRoessleretal.2016, author = {Becker, Nils and Kucharski, Robert and R{\"o}ssler, Wolfgang and Maleszka, Ryszard}, title = {Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain}, series = {FEBS Open Bio}, volume = {6}, journal = {FEBS Open Bio}, number = {7}, doi = {10.1002/2211-5463.12084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147080}, pages = {622-639}, year = {2016}, abstract = {Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.}, language = {en} }