@phdthesis{Pauli2012, author = {Pauli, Martin}, title = {Bildgebung Aktiver Zonen : Lichtmikroskopische Methoden zur Darstellung pr{\"a}synaptischer AktiverZonen in lebendem und fixiertem Gewebe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Ziel dieser Arbeit war es, strukturelle Ver{\"a}nderungen pr{\"a}synaptischer Aktiver Zonen als m{\"o}gliches Korrelat synaptischer Plastizit{\"a}t zu detektieren. Damit soll die Hypothese getestet werden, dass strukturelle Plastizit{\"a}t Aktiver Zonen eine zentrale Rolle bei der Informationsverarbeitung im Gehirn und bei Lern- und Ged{\"a}chtnisprozessen spielt. Dazu war es notwendig Methoden zu etablieren, die die strukturelle Analyse Aktiver Zonen und deren Ver{\"a}nderung in vitalem Gewebe erm{\"o}glichen. Um die Untersuchungen in einem Gewebe mit plastischen Eigenschaften durchzuf{\"u}hren, wurden Methoden zur Herstellung organotypischer hippocampaler Hirnschnittkulturen etabliert, da hippokampale Moosfasersynapsen ausgepr{\"a}gte pr{\"a}synaptische Plastizit{\"a}t aufweisen (Bliss und Collingridge, 1993). Durch Einzelzellelektroporation wurde es m{\"o}glich, individuelle Neurone mit Transgenen zur Markierung der gesamten Zelle (DsRed) und synaptischer Substrukturen wie Aktive Zonen (z.B.: GFP-CAST, einem Fluorophor-markierten AZ-Protein) zu transfizieren. Mit konfokaler Bildgebung transfizierter Zellen konnten strukturierte Anreicherungen von GFP-CAST in Moosfaserboutons dargestellt werden. Konfokale Bildgebung von Doppelimmunfluoreszenzf{\"a}rbungen zur detaillierten Analyse der Proteinlokalisation zeigte ein diffraktionsbedingtes Aufl{\"o}sungsdefizit, das auch durch die Anwendung von STED-Mikroskopie nicht zufriedenstellend gel{\"o}st werden konnte. Um eine pr{\"a}zise Karte synaptischer Proteine zu erstellen, wurde hochaufl{\"o}sende Mikroskopie (dSTORM) mit einer lateralen r{\"a}umlichen Aufl{\"o}sung von 20 nm etabliert. Dabei erwiesen sich die ausgepr{\"a}gte Plastizit{\"a}t, die hohe Dichte an Aktiven Zonen und die variable Gestalt der Boutons im hippokampalen Pr{\"a}parat als problematisch. Aus diesem Grund wurde die elektronenmikroskopisch gut charakterisierte neuromuskul{\"a}re Endplatte mit ihrer symmetrischen molekularen Struktur als Pr{\"a}parat f{\"u}r dSTORM verwendet. An der Endplatte konnte die molekulare Organisation der Aktiven-Zonen-Proteine Piccolo und Bassoon dargestellt werden. Zudem konnten erstmals die M{\"u}ndungen postsynaptischer Falten lichtmikroskopisch aufgel{\"o}st werden. So gelang es Werkzeuge zu etablieren, die mit lichtmikroskopischen Methoden die Darstellung der Architektur Aktiver Zonen mit molekularer Aufl{\"o}sung erm{\"o}glichen. Die Herausforderung wird es sein, diese neue Dimension in funktionellem Kontext zu nutzen. Die experimentellen Grundlagen dazu wurden durch eine spezielle Badkammer und die Etablierung von Rollertubekulturen bereits gelegt. Dabei erm{\"o}glicht dSTORM die Adressierung quantitativer Fragestellungen bis hin zur Bestimmung der Molek{\"u}lanzahl.}, subject = {Hippokampus}, language = {de} } @phdthesis{Sasi2020, author = {Sasi, Manju}, title = {A mouse model for genetic deletion of presynaptic BDNF from adult hippocampal mossy fiber terminals}, doi = {10.25972/OPUS-18625}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Brain-derived neurotrophic factor (BDNF) is a modulator and mediator of structural and functional plasticity at synapses in the central nervous system. Despite our profound knowledge about the synaptic function of BDNF at synapses, it is still controversially discussed whether synaptic BDNF acts primarily from pre- or postsynaptic sites. In the central nervous system, several studies show that mossy fiber (MF) projections formed by hippocampal granule neurons store the highest amount of BDNF. However, immunofluorescence and RNA labelling studies suggest that MF BDNF is primarily produced by granule neurons. Multiple other studies prefer the view that BDNF is primarily produced by postsynaptic neurons such as CA3 pyramidal neurons. Here, we question whether the BDNF, which is stored in the mossy fiber synapse, is primarily produced by granule neurons or whether by other cells in the MF-CA3 microcircuit. After standardization of immunolabelling of BDNF, confocal imaging confirmed the localization of BDNF in presynaptic MF terminals. This anterograde location of synaptic BDNF was also found in distinct regions of the fear and anxiety circuit, namely in the oval nucleus of the bed nucleus stria terminals (ovBNST) and in the central amygdala. To find out whether the presynaptic BDNF location is due to protein translation in the corresponding presynaptic dentate gyrus (DG) granule neuron, we developed and characterized a mouse model that exhibits BDNF deletion specifically from adult DG granule neurons. In this mouse model, loss of presynaptic BDNF immunoreactivity correlated with the specific Creactivity in granule neurons, thus confirming that MF BDNF is principally released by granule neurons. After BDNF deletion from granule neurons, we observed more immature neurons with widely arborized dendritic trees. This indicated that local BDNF deletion also affects the local adult neurogenesis, albeit Cre-mediated BDNF deletion only occur in adult granule neurons. Since BDNF is a master regulator of structural synaptic plasticity, it was questioned whether it is possible to visualize presynaptic, synapse-specific, structural plasticity in mossy fiber synapses. It was established that a combination of Cre-techniques together with targeting of GFP to membranes with the help of palmitoylation / myristoylation anchors was able to distinctly outline the synaptic structure of the BDNF-containing MF synapse. In summary, the mouse model characterized in here is suited to investigate the synaptic signalling function of presynaptic BDNF at the mossy fiber terminal, a model synapse to investigate microcircuit information processing from molecule to behaviour.}, subject = {Wachstumsfaktor}, language = {en} }