@phdthesis{MielichSuess2018, author = {Mielich-S{\"u}ß, Benjamin}, title = {Elucidating structural and functional aspects of prokaryotic membrane microdomains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Bacterial functional membrane microdomains (FMMs) are membrane platforms that resemble lipid rafts of eukaryotic cells in certain functional and structural aspects. Lipid rafts are nanometer-sized, dynamic clusters of proteins and lipids in eukaryotic cell membranes that serve as signaling hubs and assembling platforms. Yet, studying these structures can often be hampered by the complexity of a eukaryotic cell. Thus, the analogous structures of prokaryotes are an attractive model to study molecular traits of this type of membrane organization. Similar to eukaryotic lipid rafts, the bacterial FMMs are comprised of polyisoprenoid lipids, scaffold proteins and a distinct set of membrane proteins, involved in signaling or secretion. Investigating bacterial FMMs not only contributes to the understanding of the physiological importance of FMMs in bacteria, but also helps to elucidate general principles of rafts beyond prokaryotes. In this work, a bacterial model organism was used to investigate effects of synthetic overproduction of the raft scaffolding proteins on bacterial physiology. This overexpression causes an unusual stabilization of the FMM-harbored protease FtsH and therefore the proteolytic targets of FtsH are not correctly regulated. Developmental defects and aberrances in shape are the consequence, which in turn negatively affects cell physiology. These findings may be adapted to better understand lipid raft processes in humans, where flotillin upregulation is detected along with development of neurological diseases. Moreover, it was aimed at understanding the FMM-proteome of the human pathogen Staphylococcus aureus. An in-depth quantitative mass-spectrometry analysis reveals adaption of the protein cargo during different conditions, while maintaining a distinct set of core FMM proteins. As a case study, the assembly of the type VII secretion system was shown to be dependent on FMM integrity and more specifically on the activity of the FMM-scaffold flotillin. This secretion system is important for the virulence of this pathogen and its secretion efficiency can be targeted by small molecules that inhibit flotillin activity. This opens new venues for non-conventional antimicrobial compounds to treat staphylococcal infections.}, subject = {Staphylococcus aureus}, language = {en} }