@phdthesis{Hoffmann2017, author = {Hoffmann, Helene}, title = {Identifying regulators of tumor vascular morphology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142348}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In contrast to normal vessels, tumor vasculature is structurally and functionally abnormal. Tumor vessels are highly disorganized, tortuous and dilated, with uneven diameter and excessive branching. Consequently, tumor blood flow is chaotic, which leads to hypoxic and acidic regions in tumors. These conditions lower the therapeutic effectiveness and select for cancer cells that are more malignant and metastatic. The therapeutic outcome could be improved by increasing the functionality and density of the tumor vasculature. Tumor angiogenesis also shows parallels to epithelial to mesenchymal transition (EMT), a process enabling metastasis. Metastasis is a multi-step process, during which tumor cells have to invade the surrounding host tissue to reach the circulation and to be transported to distant sites. We hypothesize that the variability in the phenotype of the tumor vasculature is controlled by the differential expression of key transcription factors. Inhibiting these transcription factors might be a promising way for angiogenic intervention and vascular re-engineering. Therefore, we investigated the interdependence of tumor-, stroma- and immune cell-derived angiogenic factors, transcription factors and resulting vessel phenotypes. Additionally, we evaluated whether transcription factors that regulate EMT are promising targets for vascular remodeling. We used formalin fixed paraffin embedded samples from breast cancer patients, classified according to estrogen-, progesterone- and human epidermal growth factor receptor (HER) 2 status. Establishing various techniques (CD34 staining, laser microdissection, RNA isolation and expression profiling) we systematically analyzed tumor and stroma-derived growths factors. In addition, vascular parameters such as microvessel size, area, circularity and density were assessed. Finally the established expression profiles were correlated with the observed vessel phenotype. As the SNAI1 transcriptional repressor is a key regulator of EMT, we examined the effect of vascular knockdown of Snai1 in murine cancer models (E0771, B16-F10 and lewis lung carcinoma). Among individual mammary carcinomas, but not among subtypes, strong differences of vascular parameters were observed. Also, little difference between lobular carcinomas and ductal carcinomas was found. Vessel phenotype of Her2 enriched carcinomas was similar to that of lobular carcinomas. Vessel morphology of luminal A and B and basal-like tumors resembled each other. Expression of angiogenic factors was variable across subtypes. We discovered an inverse correlation of PDGF-B and VEGF-A with vessel area in luminal A tumors. In these tumors expression of IL12A, an inhibitor of angiogenesis, was also correlated with vessel size. Treatment of endothelial cells with growth factors revealed an increased expression of transcription factors involved in the regulation of EMT. Knockdown of Snai1 in endothelial cells of mice increased tumor growth and decreased hypoxia in the E0771 and the B16-F10 models. In the lewis lung carcinomas, tumor vascularity and biodistribution of doxorubicin were improved. Here, doxorubicin treatment in combination with the endothelial cell-specific knockdown did slow tumor growth. This shows that SNAI1 is important for a tumor's vascularization, with the significance of its role depending on the tumor model. The methods established in this work open the way for the analysis of the expression of key transcription factors in vessels of formalin fixed paraffin embedded tumors. This research enables us to find novel targets for vascular intervention and to eventually design novel targeted drugs to inhibit these targets.}, subject = {Antiangiogenese}, language = {en} }