@phdthesis{Kwok2020, author = {Kwok, Chee Keong}, title = {Scaling up production of reprogrammed cells for biomedical applications}, doi = {10.25972/OPUS-19186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191865}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Induced pluripotent stem cells (iPSCs) have been recognised as a virtually unlimited source of stem cells that can be generated in a patient-specific manner. Due to these cells' potential to give rise to all differentiated cell types of the human body, they have been widely used to derive differentiated cells for drug screening and disease modelling purposes. iPSCs also garner much interest as they can potentially serve as a source for cell replacement therapy. Towards the realisation of these biomedical applications, this thesis aims to address challenges that are associated with scale-up, safety and biofabrication. Firstly, the manufacture of a high number of human iPSCs (hiPSCs) will require standardised procedures for scale-up and the development of a flexible bioprocessing method, since standard adherent hiPSC culture exhibits limited scalability and is labour-intensive. While the quantity of cells that are required for cell therapy depends largely on the tissue and defect that these replacing cells are meant to correct, an estimate of 1 × 10^9 has been suggested to be sufficient for several indications, including myocardial infarction and islet replacement for diabetes. Here, the development of an integrated, microcarrier-free workflow to transition standard adherent hiPSC culture (6-well plates) to scalable stirred suspension culture in bioreactors (1 L working volume, 2.4 L maximum working volume) is presented. The two-phase bioprocess lasts 14 days and generates hiPSC aggregates measuring 198 ± 58 μm in diameter on the harvesting day, yielding close to 2 × 10^9 cells. hiPSCs can be maintained in stirred suspension for at least 7 weeks with weekly passaging, while exhibiting pluripotency-associated markers TRA-1-60, TRA-1-81, SSEA-4, OCT4, and SOX2. These cells retain their ability to differentiate into cells of all the three germ layers in vitro, exemplified by cells positive for AFP, SMA, or TUBB3. Additionally, they maintain a stable karyotype and continue to respond to specification cues, demonstrated by directed differentiation into beating cardiomyocyte-like cells. Therefore, the aim of manufacturing high hiPSC quantities was met using a state-of-the-art scalable suspension bioreactor platform. Secondly, multipotent stem cells such as induced neural stem cells (iNSCs) may represent a safer source of renewable cells compared to pluripotent stem cells. However, pre-conditioning of stem cells prior to transplantation is a delicate issue to ensure not only proper function in the host but also safety. Here, iNSCs which are normally maintained in the presence of factors such as hLIF, CHIR99021, and SB431542 were cultured in basal medium for distinct periods of time. This wash-out procedure results in lower proliferation while maintaining key neural stem cell marker PAX6, suggesting a transient pre-differentiated state. Such pre-treatment may aid transplantation studies to suppress tumourigenesis through transplanted cells, an approach that is being evaluated using a mouse model of experimental focal demyelination and autoimmune encephalomyelitis. Thirdly, biomedical applications of stem cells can benefit from recent advancements in biofabrication, where cells can be arranged in customisable topographical layouts. Employing a 3DDiscovery bioprinter, a bioink consisting of hiPSCs in gelatin-alginate was extruded into disc-shaped moulds or printed in a cross-hatch infill pattern and cross-linked with calcium ions. In both discs and printed patterns, hiPSCs recovered from these bioprints showed viability of around 70\% even after 4 days of culture when loaded into gelatin-alginate solution in aggregate form. They maintained pluripotency-associated markers TRA-1-60 and SSEA-4 and continued to proliferate after re-plating. As further proof-of-principle, printed hiPSC 3D constructs were subjected to targeted neuronal differentiation, developing typical neurite outgrowth and resulting in a widespread network of cells throughout and within the topology of the printed matrix. Staining against TUBB3 confirmed neuronal identity of the differentiated cellular progeny. In conclusion, these data demonstrate that hiPSCs not only survive the 3D-printing process but were able to differentiate along the printed topology in cellular networks.}, subject = {scale-up}, language = {en} }